Infinite dimensional differential geometry seminar

Торіс	Date/ Room	Speaker
Calculus in locally convex vector spaces I	26.02.10	Christoph
Definition and important properties of locally convex vector spaces,		Wockel
Fréchet spaces, introduction to the calculus in lcvs		
Proposed literature : [1, 3, 14, 9, 10].		
Bornological concepts in functional analysis I	05.03.10	Jan-Christoph
Definition of a bornology (family of bounded sets), bornological	SR 3a	Weise
vector spaces, relation between bornology and topology,		
bornologification, topologification, examples of bornologies		
(equicontinuous, natural,).		
Proposed literature: [7] (ch. I, ch. IV: 4.1-4.3), [10, 8, 2]		
there is also a master thesis of Florian Gach: [13].		
Bornological concepts in functional analysis II	12.03.10	Ole Vollertsen
Fundamental bornological constructions, initial and final bornologies,	09:30	
projective limits, inductive limits; necessary and sufficient	SR 4b	
conditions for a locally bounded functional to be continuous		
(see:[10] §28, important for continuity of derivatives in QFT),		
bipolar theorem, barreled spaces		
Proposed literature : [7] (ch. II), [10, 13, 5]		
Mackey (bornological) convergence	19.03.10	Andreas
Definition of Mackey convergence, Mackey nets,	SR 5	Degner
Mackey-Cauchy sequences, completeness,		
comparison with other notions of convergence, examples;		
Lipschitz curves, Mackey convergence of the difference quotient.		
Proposed literature: [2] (chapter I, section 1), [7, 5, 13]		
Mackey convergence and c^{∞} -topology	26.03.10	Benjamin
definition and properties of the integral of Lipschitz curves,	SR 4b	Lang
c^{∞} -topology, definition of a convenient vector space		
Proposed literature: [2] (chapter I, section 2), [5] (section 2.2),		
[13](section 5), see also: [6].		
	Continu	ed on next page

continued from previous page

Topic	Date	Speaker
Calculus in locally convex vector spaces II	09.04.10	Christoph
Definition of a derivative, Fundamental Theorem of Calculus,	SR 2	Wockel
chain rule, partial derivatives, higher derivatives		
Proposed literature : [1, 3, 14, 9, 10].		
Nash-Moser-Hörmander theorem I	23.04.10	Pedro
	SR 5	Lauridsen
		Ribeiro
Nash-Moser-Hörmander theorem II	30.04.10	Pedro
	SR 2	Lauridsen
		Ribeiro
Cartesian closedness in convenient calculus	07.05.10	Katharina
Proofs of different variants of the exponential law in convenient setting,	SR 2	Rejzner
Boman's theorem, spaces of smooth mappings, definition of the integral,		5
differentiation operator, chain rule.		
Proposed literature: [2] (chapter I, section 3), [5] (section 4.4), [6].		
The c^{∞} -topology	14.05.10	Falk
Comparison of the c^{∞} -topology with other topologies, examples,	SR 2	Linder
c^{∞} -topology on a product, when c^{∞} is a vector space topology,		
c^{∞} -completion, counter-examples		
Proposed literature: [2] (chapter I, section 4), [5], [6].		
Uniform boundednes principle and it's consequences	21.05.10	
Uniform boundednes principle, natural bornology vs. pointwise bornology,		
spaces of multilinear mappings.		
Proposed literature : [2] (chapter I, section 5), [5] (section 3.6), [6].		
Calculus in locally convex vector space	S	
Infinite dimensional manifolds		
Definition of an infinite dimensional manifold		
modeled on a locally convex tvs, properties, examples		
Proposed literature: [1, 14].		
Differential forms		
Differential forms, exterior derivative, Lie derivative		
Proposed literature: [1, 14].		
Infinite dimensional Lie Groups		
Definition of infinite dimensional Lie groups, Lie algebras		
Proposed literature : [1, 4].		
Groups of mappings		
Examples of groups of mappings,		
diffeomorphism group of a compact manifold		
	1	
Proposed literature : [1, 4].		

Торіс	Date	Speaker
Gauge group I, II		
Gauge grup as an infinite dimensional Lie group,		
definition and properties		
Proposed literature: [1, 4].		
Infinite dimensional manifolds in the conven	ient setting	
Infinite dimensional manifolds in the convenient setting I		
Definition of an infinite dimensional manifold modeled		
on a convenient vector space, examples and properties		
Proposed literature : [2] (in particular section 27).		
Infinite dimensional manifolds in the convenient setting II		
Tangent vectors on a convenient vector space,		
vector bundles and their sections		
Proposed literature: [2] (sections 28-30).		
Infinite dimensional manifolds in the convenient setting III		
Vector fields, introduction to differential forms,		
Proposed literature: [2] (sections 32-33).		
Infinite dimensional manifolds in the convenient setting IV		
Differential forms, exterior derivative, Lie derivative (section 33)		
Proposed literature: [2].		
Manifolds of mappings in convenient setting		
Spaces of mappings as infinite dimensional manifolds,		

References

dimensional Lie group

- [1] Neeb, Karl-Hermann *Monastir Lecture Notes on Infinite-Dimensional Lie Groups*: http://www.math.uni-hamburg.de/home/wockel/data/monastir.pdf
- [2] Kriegl, Andreas and Michor, Peter W. *The Convenient Setting of Global Analysis*: http://www.ams.org/online_bks/surv53/surv53.pdf
- [3] Hamilton, R.S. The Inverse Function Theorem of Nash and Moser

diffeomorphism group of a manifold as an infinite

Proposed literature: [2] (sections 41-43).

- [4] Wockel, Christoph Infinite-Dimensional Lie Theory for Gauge Groups: http://www.math.uni-hamburg.de/home/wockel/data/diss.pdf
- [5] Frölicher, A.; Kriegl, A., *Linear spaces and differentiation theory*, Pure and Applied Mathematics, J. Wiley, Chichester, 1988.
- [6] Frölicher, A.; *Axioms for convenient calculus*, Cahiers de topologie et géométrie différentielle catégoriques, tome **45**, no 4 (2004), p. 267-286

continued from previous page

- [7] Hogbe-Nlend, H.; *Bornologies and functional analysis*, Mathematics Studies no. 26, North-Holland, Amsterdam, New York, Oxford, 1977
- [8] Bourbaki, N.; *Topological vector spaces*, ch. 1-5, Springer-Verlag Berlin, Heidelberg, New York 2003
- [9] Rudin, W.; Functional analysis
- [10] Köthe, G.; Topological vector spaces
- [11] Omori, H.; de la Harpe, P., About interactions between Banach Lie groups and finite dimensional manifolds, J. Math. Kyoto Univ. 12 (1972), 543-570
- [12] Omori, H., On Banach Lie groups acting on finite dimensional manifolds, Tôhoku Math. J. 30 (1978), 223-250
- [13] Gach, F.; Topological versus Bornological Concepts in Infinite Dimensions, Diplomarbeit zur Erlangung des akademischen Grades Magister rerum naturalium, 2004 Wien, betreut von Ao. Univ. Prof. Dr. Andreas Kriegl
- [14] Glöckner, H; Infinite-dimensional Lie groups without completeness condition, Geometry and Analysis on finite and infinite-dimensional Lie groups, Eds. A. Strasburger, W. Wojtynski, J. Hilgert and K.-H. Neeb, Banach Center Publications 55 (2002), 43-59.
- [15] Seip, U.; A convenient setting for smooth manifolds, J. Pure Appl. Algebra 21 (1981), 279-305.
- [16] Kriegl, A.; *Eine Theorie glatter Mannigfaltigkeiten und Vektorbündel*, Dissertation, Universität Wien, 1980.