
1 A reminder of functional analysis

1.1 Proposition

A subset of a locally convex vector space (=:lcvs) is bounded if and only if every
continuous, linear functional is bounded on it.

2 Talk 5

The main aim of this small talk is the definiton of convenient vector spaces with
which I will shall start:

2.1 Theorem (Convenient vector space)

A lcvs E is called convenient or c∞-complete if one of the following eqivalent
conditions is satisfied:

(1) The RIEMANN integral exists for every LIPSCHITZ curve in E,

(2) for any c ∈ C∞(R, E) there exists a C ∈ C∞(R, E) with C ′ = c,

(3) E is c∞-closed in any lcvs,

(4) if c : R −→ E is a curve such that L ◦ c : R −→ R is smooth ∀L ∈
E∗(continuous, linear functionals on E), then c is smooth,

(5) every MACKEY-CAUCHY sequence converges; i.e. E is MACKEY com-
plete,

(6) for any bounded, closed and absolutely convex set B is EB(:=
⋃

k∈K
kB with

norm ‖x‖B = inf{λ > 0 | x ∈ λB}) a BANACH space, and

(7) any continuous, linear mapping from a normed space into E has a conti-
nuous extension to the completion of the normed space.

If I do not mention the bornology of an lcvs explicitly, I will always consider the
von NEUMANN bornology. E always denotes a lcvs as well.
In this talk, I will focus on the conditions (1-4) that I would like to discuss in
detail.
Therefore, I will directly tie in with Andreas’ talk from last Friday that ended
with the proof of the MACKEY convergence of the difference quotient.
An important consequence is the following:

2.2 Theorem (Smoothness of curves is a bornological con-
cept)

For 0 ≤ k ≤ ∞ a curve c in a lcvs E is Lipk

:⇐⇒ for each bounded, open intervall I ⊂ R exists an absolutely convex, bounded
set B ⊆ E such that c

∣∣∣
I

is a Lipk-curve in the normed space EB

1



proof :

”=⇒“: For k=0 this is an equivalent characteriziation of Lip-curves:
Take a bounded interval I ⊂ R and define B as the absolutely convex
hull of the bounded set c(I)∪{ c(t)−c(s)

t−s | t .= s, t, s ∈ I} (finite union

of bounded sets are bounded). Then c
∣∣∣
I
: I −→ EB is a well defined

Lip-curve in EB .
For k ≥ 1 chose a bounded intervall I and an absolutely convex set
B ⊆ E which contains all derivatives c(i) up to the order k as well
as their difference quotients on {(t, s) | s .= t, t, s ∈ I}.
c is differentiable, say at 0, with derivative c′(0) which follows from
1
t (

c′(t)−c(0)
t −c′(0)) ∈ B (see the proof of the MACKEY convergence

of the different quotient). So c′(t)−c(0)
t − c′(0) converges MACKEY

to 0 in E and therefore c′(t)−c(0)
t − c′(0) converges in EB to 0 with

respect to the norm topology.
The higher orders now follow by induction.

”⇐=“: This follows from the fact, that continuous, linear mappings
between lcvs are smooth i.e. they map Lipk-curves to Lipk-curves.

This theorem shows that smoothness is really a bornological thing and does
not depend on the topology but only on the dual since c ∈ Lip ⇐⇒ L ◦ c ∈
Lip ∀L ∈ E∗. So all topologies with the same dual have the same smooth curves.
Furhtermore the class of Lipk-curves does not change if one passes from a given
lct to its bornologification which is by definition the finest lct having the same
bounded sets.
Now I want to give one further result of the MACKEY convergence of the
difference quotient:

2.3 Lemma (Scalar testing of curves)

Let ck : R −→ E for 0 ≤ k < n + 1 curves such that L ◦ c0 ∈ Lipn and
(L ◦ c0)(k) = L ◦ ck ∀k,∀L ∈ E∗.
Then c0 ∈ Lipn and (c0)(k) = ck.

To put this lemma to good use someone has to guess an appropriate candidate
for the derivative.
One can ask now if someone always has to guess a candidate for the derivative
in order to prove the convergence. In finite analysis on e.g. R this is not the
case, since one can use the CAUCHY condition to show the convergence. This
concept of CAUCHY nets and MACKEY-CAUCHY was introduced by Andreas
last Friday.

2.4 Proposition (The difference quotient is MACKEY-
CAUCHY)

Let c : R −→ E be a scalary (tested with the continuous, linear functionals)
Lip1-curve in a lcvs E.
Then t 0−→ c(t)−c(0)

t is a MACKEY-CAUCHY net for t −→ 0
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proof :
For a Lip1-curve this is an immediate consequence of the MACKEY
convergence of the difference quotient. But here it is only assumed
that L ◦ c is Lip1-curve ∀L ∈ E∗.
It suffices to show that 1

t−s

(
c(t)−c(0)

t − c(s)−c(0)
s

)
is bounded on boun-

ded subsets of R \ {0}. Due to 1.1 one can assume E = R and use
the fundamental theorem of calculus:

1
t− s

(c(t)− c(0)
t

− c(s)− c(0)
s

)
=

1∫

0

c′(tr)− c′(sr)
t− s

dr

=
1∫

0

c′(tr)− c′(sr)
tr − sr

rdr

which is locally bounded since c′(tr)−c′(sr)
tr−sr is by assumption.

One consequence of this proposition is:

2.5 Lemma (Scalar testing of differentiable curves)

Let E be MACKEY complete and c : R −→ E be a curve for which L ◦ c ∈
Lipn ∀L ∈ E∗.
Then c ∈ Lipn.

Here is another important general result dealing with linear maps and curves:

2.6 Lemma (Bounded linear maps)

A linear mapping L : E −→ F between lcvs is bounded if and only if it is smooth
which means that it maps smooth curves in E to smooth curves in F .

Now I will turn to the integration of curves.
One can show that for a continuous curve c : [0, 1] −→ E the RIEMANN sums

R(c, Z) :=
n∑

k=1
(tk − tk−1)c(xk) form a CAUCHY net with respect to the partial

strict odering given by the size of the mesh µ(Z) := max{|tk−tk−1| | 0 < k < n},
where 0 = t0 < t1 < · · · < tn = 1 is a partition Z of [0, 1] and xk ∈ [tk, tk−1].
This will be of important concern when I discuss the integral auf LIPSCHITZ
curves. Foremost some statements about the integral of curves:

2.7 Proposition (Integral of continuous curves)

Let c : R −→ E be a curve into a lcvs E and E
M its MACKEY completion.

Then there ist a unique differentiable curve
∫

c : R −→ E
M such that (

∫
c)(0) =

0 and (
∫

c)′ = c.

3



2.8 Definiton (Definite integral)

For continuous curves c : R −→ E the definite integral
b∫

a
c ∈ E

M is given by

b∫

a

c = (
∫

c)(b)− (
∫

c)(a).

2.9 Corollary (Properties of the integral)

For a continuous curves c : R −→ E holds:

(1) L(
b∫

a
c) =

b∫
a
(L ◦ c) ∀L ∈ E∗,

(2)
b∫

a
c +

d∫

b

c =
d∫
a

c,

(3)
b∫

a
(c ◦ ϕ)ϕ′ =

ϕ(b)∫

ϕ(a)

c for ϕ ∈ C1(R, R),

(4)
b∫

a
c lies in the closed, convex hull in E

M of the set {(b − a)c(t) | a < t <

b} ⊆ E,

(5)
b∫

a
: C(R, E) −→ E

M is linear, and

(6) for each C1-curve c : R −→ E

b∫

a

c′ = c(b)− c(a) (fundamental theorem of calculus).

2.10 Proposition (Integral of LIPSCHITZ curves)

Let c : [0, 1] −→ E be a LIPSCHITZ curve into a MACKEY complete lcvs E.
Then the RIEMANN integral exists in E as the MACKEY limit of the RIE-
MANN sums.

Proof : Let 0 < ε ≤ 1 and Z be a partition of [0, 1] with mesh µ(Z) ≤
ε and refinement Z ′. Let [a, b] be an interval from the partition Z,
t ∈ [a, b] and a = t0 < t1 < · · · < tn = b the refinement.

|b− a| ≤ ε =⇒ |t− tk| ≤ ε, for 0 ≤ k ≤ n.

(b− a)c(t)−
n∑

k=1

(tk − tk−1)c(tk) =
n∑

k=1

(tk − tk−1)
(
c(t)− c(tk)

)
=

n∑

k=1

µkbk,
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where µk = ε · (tk − tk−1) ≥ 0 with
n∑

k=1
µk = (b − a)ε and bk :=

c(t)−c(tk)
ε is contained in the absolutely convex, bounded set B :=

abs.conv.Spann
(
{ c(t)−c(s)

t−s | s, t ∈ [0, 1]}
)
. B is bounded since c ∈

Lip.
It follows that

R(c, Z)−R(c, Z ′)
ε

=
1
ε

m∑

l=1

(
(bl − al)c(tl)−

n∑

k=1

(tkl − t(k−1)l)c(tkl)
)

=
m∑

l=1

n∑

k=1

1
ε
(tkl − t(k−1)l)

︸ ︷︷ ︸
=:µkl

(
c(tl)− c(tkl)

)
︸ ︷︷ ︸

=:bkl∈B

,

where
m∑

l=1

n∑
k=1

µkl =
m∑

l=1
(bl − al) = 1 from which it follows that

R(c, Z)−R(c, Z ′) ∈ εB.
Now take two partitions Z1 and Z2 of [0, 1] with mesh µ(Z1) ≤ ε1 ≤ ε
and µ(Z2) ≤ ε2 ≤ ε. Let Z be a common refinement (picture!) of Z1

and Z2, then

R(c, Z1)−R(c, Z2)
2

=
R(c, Z1)−R(c, Z) + R(c, Z)−R(c, Z2)

2

=
1
2
(
R(c, Z1)−R(c, Z)

)

︸ ︷︷ ︸
∈εB

− 1
2
(
R(c, Z2)−R(c, Z)

)

︸ ︷︷ ︸
∈εB︸ ︷︷ ︸

∈εB

=⇒ R(c, Z1)−R(c, Z2) ∈ 2εB.

So the RIEMANN sums for a LIPSCHITZ curve form a MACKEY-
CAUCHY net with coefficients µZ,Z′ := 2max{µ(Z), µ(Z ′)} and
since E is MACKEY complete, they do converge.

2.11 Definition (c∞-topology)

The c∞-topology on a lcvs E is the final topology with respect to all smooth
curves R −→ E. In other words the c∞-topology is the finest topology on E such
that all smooth curves R −→ E become continuous.
The open sets of the c∞-topology will be called c∞-open.

The c∞-topology will be treated in another talk in more detail but I would like
to anticipate the following fact:
The finest lct coarser than the c∞-topology ist the bornologification of the lcvs.

2.12 Convenient vector space

Finally I will return to the definition 2.1 of a convenient vector space and sketch
a few easy implications:
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(5)=⇒(4) is precisely lemma 2.5, (5)=⇒(1) is shown by proposition 2.10.

(1)=⇒(2): A smooth curve is LIPSCHITZ and thus locally RIEMANN integra-
ble. The indefinite RIEMANN integral equals the intergal of proposition 2.7.

(3)=⇒(5): Let F be the MACKEY completion of E. Any MACKEY-CAUCHY
sequence in E has a limit in F and since E is by assumption c∞-closed in F the
limit lies in E.
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