1 A reminder of functional analysis

1.1 Proposition

A subset of a locally convex vector space (=:lcvs) is bounded if and only if every
continuous, linear functional is bounded on it.

2 Talk 5

The main aim of this small talk is the definiton of convenient vector spaces with
which I will shall start:

2.1 Theorem (Convenient vector space)

A lcvs E is called convenient or ¢ -complete if one of the following egivalent
conditions is satisfied:

(1) The RIEMANN integral exists for every LIPSCHITZ curve in E,
(2) for any ¢ € C*(R, E) there exists a C € C*(R, E) with C' = ¢,
(3) E is ¢>*-closed in any lcvs,

(4) if ¢ : R — FE is a curve such that Loc : R — R is smooth VL €
E* (continuous, linear functionals on E), then ¢ is smooth,

(5) every MACKEY-CAUCHY sequence converges; i.e. E is MACKEY com-
plete,

(6) for any bounded, closed and absolutely convex set B is Eg(:= |J kB with
keK
norm ||z||p = inf{\ > 0|z € AB}) a BANACH space, and

(7) any continuous, linear mapping from a normed space into E has a conti-
nuous extension to the completion of the normed space.

If T do not mention the bornology of an lcvs explicitly, I will always consider the
von NEUMANN bornology. E always denotes a lcvs as well.

In this talk, I will focus on the conditions (1-4) that I would like to discuss in
detail.

Therefore, I will directly tie in with Andreas’ talk from last Friday that ended
with the proof of the MACKEY convergence of the difference quotient.

An important consequence is the following:

2.2 Theorem (Smoothness of curves is a bornological con-
cept)

For 0 <k < oo a curve ¢ in a lecvs E is Lip*

<= for each bounded, open intervall I C R exists an absolutely convez, bounded

set B C E such that c’l is a Lip®-curve in the normed space Ep



proof:
,=—*“: For k=0 this is an equivalent characteriziation of Lip-curves:
Take a bounded interval I C R and define B as the absolutely convex

hull of the bounded set ¢(I)U {w | t # s,t,s € I} (finite union
of bounded sets are bounded). Then ¢ K I — Egp is a well defined
Lip-curve in Ep.

For k > 1 chose a bounded intervall I and an absolutely convex set
B C FE which contains all derivatives ¢(¥ up to the order k as well
as their difference quotients on {(¢,s) | s #t,t,s € I}.

¢ is differentiable, say at 0, with derivative ¢/(0) which follows from
1(M —(0)) € B (see the proof of the MACKEY convergence

t ¢
of the different quotient). So M — (0) converges MACKEY

to 0 in E and therefore M — (0) converges in Ep to 0 with
respect to the norm topology.

The higher orders now follow by induction.

,<="%: This follows from the fact, that continuous, linear mappings
between lcvs are smooth i.e. they map Lip*-curves to Lip*-curves.

This theorem shows that smoothness is really a bornological thing and does
not depend on the topology but only on the dual since ¢ € Lip <= Loc €
Lip YL € E*. So all topologies with the same dual have the same smooth curves.
Furhtermore the class of Lip*-curves does not change if one passes from a given
lct to its bornologification which is by definition the finest lct having the same
bounded sets.

Now I want to give one further result of the MACKEY convergence of the
difference quotient:

2.3 Lemma (Scalar testing of curves)

Let c# : R — E for 0 < k < n+ 1 curves such that L o ¢ € Lip" and
(Loc®)®) =Lock Vk,VL € E*.
Then ® € Lip™ and () F) = k.

To put this lemma to good use someone has to guess an appropriate candidate
for the derivative.

One can ask now if someone always has to guess a candidate for the derivative
in order to prove the convergence. In finite analysis on e.g. R this is not the
case, since one can use the CAUCHY condition to show the convergence. This
concept of CAUCHY nets and MACKEY-CAUCHY was introduced by Andreas
last Friday.

2.4 Proposition (The difference quotient is MACKEY-
CAUCHY)

Let ¢ : R — E be a scalary (tested with the continuous, linear functionals)
Lip'-curve in a lcvs E.
Then t — 0= s o MACKEY-CAUCHY net fort — 0



proof:

For a Lip'-curve this is an immediate consequence of the MACKEY
convergence of the difference quotient. But here it is only assumed
that L o ¢ is Lip*-curve VL € E*.

It suffices to show that - (C(t)zc(o) - C(S);C(O)) is bounded on boun-
ded subsets of R \ {0}. Due to 1.1 one can assume E = R and use
the fundamental theorem of calculus:

c(tr) —c(sr)
t—s

dr

1 re(t) —c(0) e(s) —e(0)

t—s ( t B s )

c(tr) — ' (sr) vdr
tr — sr

S O~

¢/ (tr)—c'(sr)

which is locally bounded since ——/—

is by assumption.

One consequence of this proposition is:

2.5 Lemma (Scalar testing of differentiable curves)

Let E be MACKEY complete and ¢ : R — FE be a curve for which Loc €
Lip™ VL € E*.
Then c € Lip™.

Here is another important general result dealing with linear maps and curves:

2.6 Lemma (Bounded linear maps)

A linear mapping L : E — F between lcvs is bounded if and only if it is smooth
which means that it maps smooth curves in E to smooth curves in F'.

Now I will turn to the integration of curves.
One can show that for a continuous curve ¢ : [0,1] — E the RIEMANN sums

R(c,Z) := > (tp — ti—1)c(zx) form a CAUCHY net with respect to the partial
k

=1
strict odering given by the size of the mesh u(Z2) := maz{|ty—tr—1| | 0 < k < n},
where 0 = t9 < t; < -+ < t, = 1 is a partition Z of [0,1] and =) € [tg,tx—1]
This will be of important concern when I discuss the integral auf LIPSCHITZ
curves. Foremost some statements about the integral of curves:

2.7 Proposition (Integral of continuous curves)

Let¢:R — E be a curve into a levs E and B its MACKEY completion.

Then there ist a unique differentiable curve [c¢: R — EY such that ([e)0)=
0 and ([¢) =c.



2.8 Definiton (Definite integral)

b
For continuous curves ¢ : R — E the definite integral [ ¢ € EY s given by

/bc= ([ow-([ o

2.9 Corollary (Properties of the integral)

For a continuous curves ¢ : R — E holds:

c):f(Loc) VL € £,

a

(1) L(

8 —o

b d d
(2) Jet[e=[e,
a b a
b ®(b)
(3) [(cop)g' = [ cforpeClRR),
a #(a)
b —M
(4) [ ¢ lies in the closed, convex hull in E of the set {(b—a)c(t) | a <t <
b} CE,

b
(5) [:C(R,E) — EY s linear, and

(6) for each C*-curve c: R — E

b
/c’ = ¢(b) — c¢(a) (fundamental theorem of calculus).

a

2.10 Proposition (Integral of LIPSCHITZ curves)

Let ¢:[0,1] — E be a LIPSCHITZ curve into a MACKEY complete lcvs E.
Then the RIEMANN integral exists in E as the MACKEY limit of the RIE-
MANN sums.

Proof: Let 0 < € < 1 and Z be a partition of [0, 1] with mesh p(Z) <
¢ and refinement Z’. Let [a,b] be an interval from the partition Z,
t €la,b] and a =ty <t < --- < t, = b the refinement.

b—a|<e= |t —tx| <¢, for 0 <k <n.

n n

(b—a)e(t) = > (te — te1)e(te) = Y (tk — te—1) (c(t) — c(te)) =D pubr,
k=1

k=1 k=1



where pp = € (tp — tp—1) > 0 with > pr = (b — a)e and by, :=
k=1

M is contained in the absolutely convex, bounded set B :=

abs.conv.Spann({ et)=c(s) C(S) | s,t € [0, 1]}> B is bounded since ¢ €
Lip.
It follows that

n

e ;R(C = %Z< b —a)e(ty) = ) (tw — t(k—lﬂ)c(t’“l))

l= k=1
m n 1
- ZZ . (tre = t—1y1) (c(te) — c(tir)),
- =:fik1 =br€B
where > > up = > (b — a;) = 1 from which it follows that
I=1k=1 =1

R(c,Z) — R(c,Z') € eB.
Now take two partitions Z; and Z5 of [0, 1] with mesh p(Z;) < e <e
and p(Z) < e2 < e. Let Z be a common refinement (picture!) of Z;

and Zs, then
R(c,Z1) — R(c, Zs) _ R(c,Z1) — R(c,Z) + R(¢, Z) — R(c, Zs)
2 2
%(R(C Z1) — R(c, Z)) — %(R(C, Zy) — R(c, 7))
ceB ceB
ceB

— R(C, Zl) — ]’2(07 ZQ) € 2eB.

So the RIEMANN sums for a LIPSCHITZ curve form a MACKEY-
CAUCHY net with coeflicients uz z = 2maz{u(Z),u(Z")} and
since F is MACKEY complete, they do converge.

2.11 Definition (¢*-topology)

The c¢*°-topology on a lcvs E is the final topology with respect to all smooth
curves R — E. In other words the ¢ -topology is the finest topology on E such
that all smooth curves R — E become continuous.

The open sets of the c>-topology will be called c>-open.

The c*°-topology will be treated in another talk in more detail but I would like
to anticipate the following fact:
The finest lct coarser than the ¢>-topology ist the bornologification of the lcvs.

2.12 Convenient vector space

Finally I will return to the definition 2.1 of a convenient vector space and sketch
a few easy implications:



(5)==(4) is precisely lemma 2.5, (5)==(1) is shown by proposition 2.10.

(1)=(2): A smooth curve is LIPSCHITZ and thus locally RIEMANN integra-
ble. The indefinite RIEMANN integral equals the intergal of proposition 2.7.

(3)=(5): Let F be the MACKEY completion of E. Any MACKEY-CAUCHY
sequence in F has a limit in F’ and since F is by assumption ¢>°-closed in F' the

limit lies in F.



