1 Reminder: Convergence of nets in topological spaces

Definition 1.1. A directed system is an index set I together with an ordering \prec which satisfies:

- 1. If $\alpha, \beta \in I$, then there exists $\gamma \in I$ sth. $\gamma \succ \alpha$ and $\gamma \succ \beta$
- 2. \prec is a partial ordering (i.e. a reflexive transitive and antisymmetric relation on I)

Definition 1.2. A net in a topological space S is a mapping from a directed system I to S (notation: $(x_{\alpha})_{\alpha \in I}$).

Definition 1.3. A net $(x_{\alpha})_{\alpha \in I}$ in a topological space S is said to converge to $x \in S$ (notation: $x_{\alpha} \to x$) if for any neighborhood N of x there is a $\beta \in I$ s.th. $x_{\alpha} \in N$ if $\alpha \succ \beta$.

2 bornological convergence of nets

In a bornological vector space (bvs) E one has a natural notion of convergence (which depends only on the bornology \mathcal{B}). In many applications one uses convex bornological vector spaces (cbvs).

Definition 2.1. Let $(x_{\gamma})_{\gamma \in \Gamma}$ be a net in a cbvs E. We say that $(x_{\gamma})_{\gamma \in \Gamma}$ converges bornologically to 0 $((x_{\gamma})_{\gamma \in \Gamma} \to 0)$ if there exists a bounded and absolutely convex set $B \subset E$ and a net $(\lambda_{\gamma})_{\gamma \in \Gamma}$ in \mathbb{K} converging to 0 sth. $x_{\gamma} \in \lambda_{\gamma} B$.

Correspondingly, $(x_{\gamma})_{\gamma \in \Gamma}$ is said to converge bornologically to $x \in E$ if $(x_{\gamma})_{\gamma \in \Gamma} - x \to 0$. Recall that absolutely convex is equivalent to disked. Furthermore, we define the vector space E_B wrt. the disk $B \subset E$ to be the linear span of B, which is equivalent to

$$E_B = \bigcup_{\lambda \in \mathbb{K}} \lambda B.$$

This space is then equipped with the seminorm $p_B(x) = \inf\{\alpha \in \mathbb{R}_+ | x \in \alpha B\}$, inducing a topology on E_B . If E is a lows and B is bounded additionally, the p_B is a norm.

Proposition 2.2 (characterisation of bornological convergence). Let $(x_{\gamma})_{\gamma \in \Gamma}$ be a net in a cbvs E. Then $(x_{\gamma})_{\gamma \in \Gamma} \to 0$ if and only if there exists a bounded absolutely convex set $B \subset E$ s.th. $(x_{\gamma})_{\gamma \in \Gamma}$ converges to 0 in E_B (by which we mean topological convergence).

Convention: If E is a topological vector space, then " \rightarrow " will denote topological convergence while " $\stackrel{M}{\rightarrow}$ " (called Mackey-convergence) refers to bornological convergence wrt. the canonical von Neumann bornology.

Remark 2.3. Let E be a levs and $B \subset E$ absolutely convex and bounded. Then the canonical embedding $E_B \to E$ is continous, so bornologically convergent nets (which converge topologically in E_B) converge also topologically in E. Generally the converse is false, as seen in the following **Example 2.4.** Denote by c_0 the space of sequences converging to 0 and consider the space $E = \prod_{c_0} \mathbb{R}$, endowed with the product topology (which is the topology of pointwise convergence). Define $x_n \in E$ by its components $(x_n)_{\mu} := \mu(n)$. Clearly (x_n) converges to 0 wrt. this topology because it does so in every component. We show that (x_n) is not Mackey convergent: Suppose there is $B \subset E$, bounded and a sequence of reals (λ_n) converging to infinity sth. $\{\lambda_n x_n : n \in \mathbb{N}\} \subseteq B \Leftrightarrow x_n \in 1/\lambda_n B$. Project this on the component κ , given by $\kappa_n := 1/\sqrt{\lambda_n} \in c_0$. Thus $\{\sqrt{\lambda_n} : n \in \mathbb{N}\} \subseteq pr_{\kappa}(B) \Rightarrow$ Contradiction, since $pr_{\kappa}(B)$ must be bounded in \mathbb{R} . Thus (x_n) cannot be Mackey convergent since B and (λ_n) were arbitrary.

Definition 2.5. A net $(x_{\gamma})_{\gamma \in \Gamma}$ in a cbvs is called Cauchy net if the net

$$(x_{\gamma} - x_{\gamma'})_{(\gamma,\gamma')\in\Gamma\times\Gamma}$$

converges to 0.

Definition 2.6. Let *E* be a separated topological vector space. $(x_{\gamma})_{\gamma \in \Gamma}$ is called Mackey-Cauchy net if it is Cauchy wrt. the von Neumann bornology of *E*, i.e. there exists $(\mu_{\gamma,\gamma'})_{(\gamma,\gamma')\in\Gamma\times\Gamma}$ in \mathbb{R} converging to 0 and $B \subset E$, bounded and absolutely convex s.th. $(x_{\gamma} - x_{\gamma'}) \in \mu_{\gamma,\gamma'}B$.

- **Lemma 2.7.** 1. Let E, F be close $f : E \to F$ be a bounded map. Let further $x_{\gamma} \to x, y_{\gamma} \to y$ in E and $\lambda_{\gamma} \to \lambda$ in \mathbb{K} . Then $x_{\gamma} + y_{\gamma} \to x + y, \lambda_{\gamma} x_{\gamma} \to \lambda x$ and $f(x_{\gamma}) \to f(x)$.
 - 2. In a lcvs every Mackey convergent net is topologically convergent and every Mackey-Cauchy net is a Cauchy net.
 - 3. In a lcs every weakly convergent Mackey-Cauchy net is Mackey convergent.

Finally we can make a statement about the uniqueness of bornologically convergent nets in separated cbvs (recall that in a separated bornology $\{0\}$ is the only bounded vector subspace):

Proposition 2.8. A cbvs is separated iff every convergent net has a unique limit.

3 Completeness

Similarly to topological notions, one defines a bornological space to be complete if every bornological Cauchy sequence converges. In particular

Definition 3.1. A lcvs E in which every Mackey-Cauchy sequence converges bornologically is called Mackey complete.

Proposition 3.2. For a levs E the following conditions are equivalent:

1. Every Mackey-Cauchy net converges topologically in E

- 2. Every Mackey-Cauchy sequence converges topologically in E
- 3. For every absolutely convex closed bounded set B the space E_B is complete
- 4. For every bounded set B there exists an absolutely convex bounded set $B' \supseteq B$ s.th. $E_{B'}$ is complete.

Proof. $1 \Rightarrow 2$. and $3 \Rightarrow 4$. are clear.

 $2 \Rightarrow 3$.: Let (x_n) be Cauchy in E_B . Since E_B is normed, it suffices to show sequential completeness. By prop. 2.2, (x_n) is Mackey-Cauchy in E and converges to some $x \in E$ by assumption. Since $p_B(x_n - x_m) \to 0$, given $\epsilon > 0$ we find $N(\epsilon) \in \mathbb{N}$ s.th. $p_B(x_n - x_m) < \epsilon$ whenever $n, m > N(\epsilon)$ and thus $x_n - x_m \in \epsilon B$. Now $x_n - x \in \epsilon B$ for all $n > N(\epsilon)$ since B is closed. In particular $x \in E_B$ and thus $x_n \to x$ in E_B .

4.⇒ 1.: Let $(x_{\gamma})_{\gamma \in \Gamma}$ be Mackey-Cauchy in *E*. There is some $\mu_{\gamma,\gamma'} \to 0$ in \mathbb{R} s.th. $(x_{\gamma} - x_{\gamma'}) \in \mu_{\gamma,\gamma'}B$ for some *B* bounded. Let γ_0 be arbitrary and choose *B* to be absolutely convex, to contain x_{γ_0} and s.th. E_B is complete by (4.). For $\gamma \in \Gamma$ we have $x_{\gamma} = x_{\gamma_0} + x_{\gamma} - x_{\gamma_0} \in x_{\gamma_0} + \mu_{\gamma,\gamma_0}B \subset E_B$ and $p_B(x_{\gamma} - x_{\gamma'}) \leq \mu_{\gamma,\gamma'} \to 0$. Thus (x_{γ}) is Cauchy in E_B and converges in E_B and therefore in *E*.

The following proposition establishes the equivalence of Mackey convergence and topological convergence in lcvs:

Proposition 3.3. In a levs a Mackey-Cauchy net converges bornologically in E (i.e. E is Mackey complete) iff it converges topologically in E.

Remark 3.4. Since Mackey-Cauchy sequences of a lows are special Cauchy sequences, it follows from the last proposition and the equivalence $1.\Leftrightarrow 2$. before that a sequentially complete lows is Mackey complete, so Mackey completeness is a weaker condition. Example: space of distributions

4 Lipschitz curves and Mackey convergence of the difference quotient

Definition 4.1. Let E be a levs. A curve $c : \mathbb{R} \to E$ is called differentiable if the derivative $c'(t) := \lim_{s \to 0} (c(t+s) - c(t))/s$ at t exists for all t. c is called smooth or C^{∞} if all iterated derivatives exist. It is called C^n for $n < \infty$ if its iterated derivatives up to order n exist and are continous.

Definition 4.2. A curve $c : \mathbb{R} \to E$ is called locally Lipschitzian if every point $r \in \mathbb{R}$ has a neighborhood U sth. the Lipschitz codition is satisfied on U, i.e. the set $\{\frac{1}{t-s}(c(t)-c(s)): t \neq s; t, s \in U\}$ is bounded.

This implies that for c the Lipschitz condition is satisfied on each bounded interval since for increasing t_i

$$\frac{c(t_n) - c(t_0)}{t_n - t_0} = \sum \frac{t_{i+1} - t_i}{t_n - t_0} \frac{c(t_{i+1}) - c(t_i)}{t_{i+1} - t_i}$$

lies in the absolutely convex hull of a finite union of bounded sets. $c : \mathbb{R} \to E$ is called $\mathcal{L}ip^k$ if all derivatives up to order k exist and are locally Lipschitzian.

4.1 Mean value theorem

Motivation: For curves c with values in a finite dimensional space there is a generalised version of the mean value theorem in one dimension, namely for an additional function $h : \mathbb{R} \to \mathbb{R}$ with nonvanishing derivative we have that $\frac{c(a)-c(b)}{h(a)-h(b)}$ lies in the closed convex hull of $\{c'(r)/h'(r) : r\}$

Proposition 4.3. Let $c: I := [a, b] \to E$ be a continuous curve which is differentiable except at points in a countable subset $D \subseteq I$. Let h be a continuous monotone function $h: I \to \mathbb{R}$ which is differentiable on $I \setminus D$. Let A be a convex closed subset of E sth. $c'(t) \in h'(t)A$ for all $t \notin D$. Then $c(b) - c(a) \in (h(b) - h(a))A$.

4.2 The difference quotient converges Mackey

Proposition 4.4. Let $c : \mathbb{R} \to E$ be a $\mathcal{L}ip^1$ -curve. Then the curve $\frac{1}{t} \left(\frac{1}{t} (c(t) - c(0)) - c'(0) \right)$ is bounded on subsets of $\mathbb{R} \setminus \{0\}$.

Proof. Apply 4.3 with h = Id to c and obtain:

$$\frac{c(t) - c(0)}{t} - c'(0) \in \langle c'(r) : 0 < |r| < |t| \rangle_{\text{closed,convex}} - c'(0)$$
$$= \langle c'(r) - c'(0) : 0 < |r| < |t| \rangle_{\text{closed,convex}}$$
$$= \left\langle r \frac{c'(r) - c'(0)}{r} : 0 < |r| < |t| \right\rangle_{\text{closed,convex}}$$

Let a > 0. Since $\{\frac{c'(r)-c'(0)}{r} : 0 < |r| < |a|\}$ is bounded and hence contained in a closed absolutely convex and bounded set B it follows that

$$\frac{1}{t} \left(\frac{c(t) - c(0)}{t} - c'(0) \right) \in \left\langle \frac{r}{t} \frac{c'(r) - c'(0)}{r} : 0 < |r| < |t| \right\rangle_{\text{closed,convex}} \subseteq B$$