
1 Reminder: Convergence of nets in topological
spaces

Definition 1.1. A directed system is an index set I together with an ordering
≺ which satisfies:

1. If α, β ∈ I, then there exists γ ∈ I sth. γ � α and γ � β

2. ≺ is a partial ordering (i.e. a reflexive transitive and antisymmetric rela-
tion on I)

Definition 1.2. A net in a topological space S is a mapping from a directed
system I to S (notation: (xα)α∈I).

Definition 1.3. A net (xα)α∈I in a topological space S is said to converge to
x ∈ S (notation: xα → x) if for any neighborhood N oF x there is a β ∈ I s.th.
xα ∈ N if α � β.

2 bornological convergence of nets

In a bornological vector space (bvs) E one has a natural notion of convergence
(which depends only on the bornology B). In many applications one uses convex
bornological vector spaces (cbvs).

Definition 2.1. Let (xγ)γ∈Γ be a net in a cbvs E. We say that (xγ)γ∈Γ con-
verges bornologically to 0 ((xγ)γ∈Γ → 0) if there exists a bounded and absolutely
convex set B ⊂ E and a net (λγ)γ∈Γ in K converging to 0 sth. xγ ∈ λγB.

Correspondingly, (xγ)γ∈Γ is said to converge bornologically to x ∈ E if
(xγ)γ∈Γ − x → 0. Recall that absolutely convex is equivalent to disked. Fur-
thermore, we define the vector space EB wrt. the disk B ⊂ E to be the linear
span of B, which is equivalent to

EB =
⋃
λ∈K

λB.

This space is then equipped with the seminorm pB(x) = inf{α ∈ R+|x ∈ αB},
inducing a topology on EB . If E is a lcvs and B is bounded additionally, the
pB is a norm.

Proposition 2.2 (characterisation of bornological convergence). Let (xγ)γ∈Γ

be a net in a cbvs E. Then (xγ)γ∈Γ → 0 if and only if there exists a bounded
absolutely convex set B ⊂ E s.th. (xγ)γ∈Γ converges to 0 in EB (by which we
mean topological convergence).

Convention: If E is a topological vector space, then “→” will denote topolog-
ical convergence while “M→“ (called Mackey-convergence) refers to bornological
convergence wrt. the canonical von Neumann bornology.

Remark 2.3. Let E be a lcvs and B ⊂ E absolutely convex and bounded. Then
the canonical embedding EB → E is continous, so bornologically convergent nets
(which converge topologically in EB) converge also topologically in E. Generally
the converse is false, as seen in the following
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Example 2.4. Denote by c0 the space of sequences converging to 0 and con-
sider the space E =

∏
c0

R, endowed with the product topology (which is the
topology of pointwise convergence). Define xn ∈ E by its components (xn)µ :=
µ(n). Clearly (xn) converges to 0 wrt. this topology because it does so in ev-
ery component. We show that (xn) is not Mackey convergent: Suppose there
is B ⊂ E, bounded and a sequence of reals (λn) converging to infinity sth.
{λnxn : n ∈ N} ⊆ B ⇔ xn ∈ 1/λnB. Project this on the component κ, given
by κn := 1/

√
λn ∈ c0. Thus {

√
λn : n ∈ N} ⊆ prκ(B) ⇒ Contradiction, since

prκ(B) must be bounded in R. Thus (xn) cannot be Mackey convergent since B
and (λn) were arbitrary.

Definition 2.5. A net (xγ)γ∈Γ in a cbvs is called Cauchy net if the net

(xγ − xγ′)(γ,γ′)∈Γ×Γ

converges to 0.

Definition 2.6. Let E be a separated topological vector space. (xγ)γ∈Γ is called
Mackey-Cauchy net if it is Cauchy wrt. the von Neumann bornology of E, i.e.
there exists (µγ,γ′)(γ,γ′)∈Γ×Γ in R converging to 0 and B ⊂ E, bounded and
absolutely convex s.th. (xγ − xγ′) ∈ µγ,γ′B.

Lemma 2.7. 1. Let E,F be cbvs f : E → F be a bounded map. Let further
xγ → x, yγ → y in E and λγ → λ in K. Then xγ+yγ → x+y, λγxγ → λx
and f(xγ)→ f(x).

2. In a lcvs every Mackey convergent net is topologically convergent and ev-
ery Mackey-Cauchy net is a Cauchy net.

3. In a lcs every weakly convergent Mackey-Cauchy net is Mackey convergent.

Finally we can make a statement about the uniqueness of bornologically
convergent nets in separated cbvs (recall that in a separated bornology {0} is
the only bounded vector subspace):

Proposition 2.8. A cbvs is separated iff every convergent net has a unique
limit.

3 Completeness

Similarly to topological notions, one defines a bornological space to be complete
if every bornological Cauchy sequence converges. In particular

Definition 3.1. A lcvs E in which every Mackey-Cauchy sequence converges
bornologically is called Mackey complete.

Proposition 3.2. For a lcvs E the following conditions are equivalent:

1. Every Mackey-Cauchy net converges topologically in E
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2. Every Mackey-Cauchy sequence converges topologically in E

3. For every absolutely convex closed bounded set B the space EB is complete

4. For every bounded set B there exists an absolutely convex bounded set
B′ ⊇ B s.th. EB′ is complete.

Proof. 1.⇒ 2. and 3.⇒ 4. are clear.
2.⇒ 3.: Let (xn) be Cauchy in EB . Since EB is normed, it suffices to show se-
quential completeness. By prop. 2.2, (xn) is Mackey-Cauchy in E and converges
to some x ∈ E by assumption. Since pB(xn − xm) → 0, given ε > 0 we find
N(ε) ∈ N s.th. pB(xn−xm) < ε whenever n,m > N(ε) and thus xn−xm ∈ εB.
Now xn − x ∈ εB for all n > N(ε) since B is closed. In particular x ∈ EB and
thus xn → x in EB .
4.⇒ 1.: Let (xγ)γ∈Γ be Mackey-Cauchy in E. There is some µγ,γ′ → 0 in R s.th.
(xγ − xγ′) ∈ µγ,γ′B for some B bounded. Let γ0 be arbitrary and choose B to
be absolutely convex, to contain xγ0 and s.th. EB is complete by (4.). For γ ∈ Γ
we have xγ = xγ0 +xγ−xγ0 ∈ xγ0 +µγ,γ0B ⊂ EB and pB(xγ−xγ′) ≤ µγ,γ′ → 0.
Thus (xγ) is Cauchy in EB and converges in EB and therefore in E.

The following proposition establishes the equivalence of Mackey convergence
and topological convergence in lcvs:

Proposition 3.3. In a lcvs a Mackey-Cauchy net converges bornologically in
E (i.e. E is Mackey complete) iff it converges topologically in E.

Remark 3.4. Since Mackey-Cauchy sequences of a lcvs are special Cauchy
sequences, it follows from the last proposition and the equivalence 1.⇔2. before
that a sequentially complete lcvs is Mackey complete, so Mackey completeness
is a weaker condition. Example: space of distributions

4 Lipschitz curves and Mackey convergence of
the difference quotient

Definition 4.1. Let E be a lcvs. A curve c : R → E is called differentiable if
the derivative c′(t) := lims→0(c(t + s) − c(t))/s at t exists for all t. c is called
smooth or C∞ if all iterated derivatives exist. It is called Cn for n < ∞ if its
iterated derivatives up to order n exist and are continous.

Definition 4.2. A curve c : R→ E is called locally Lipschitzian if every point
r ∈ R has a neighborhood U sth. the Lipschitz codition is satisfied on U , i.e.
the set { 1

t−s (c(t)− c(s)) : t 6= s; t, s ∈ U} is bounded.

This implies that for c the Lipschitz condition is satisfied on each bounded
interval since for increasing ti

c(tn)− c(t0)
tn − t0

=
∑ ti+1 − ti

tn − t0
c(ti+1)− c(ti)
ti+1 − ti

lies in the absolutely convex hull of a finite union of bounded sets. c : R→ E is
called Lipk if all derivatives up to order k exist and are locally Lipschitzian.
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4.1 Mean value theorem

Motivation: For curves c with values in a finite dimensional space there is a
generalised version of the mean value theorem in one dimension, namely for
an additional function h : R → R with nonvanishing derivative we have that
c(a)−c(b)
h(a)−h(b) lies in the closed convex hull of {c′(r)/h′(r) : r}

Proposition 4.3. Let c : I := [a, b]→ E be a continous curve which is differen-
tiable except at points in a countable subset D ⊆ I. Let h be a continous mono-
tone function h : I → R which is differntiable on I \D. Let A be a convex closed
subset of E sth. c′(t) ∈ h′(t)A for all t /∈ D. Then c(b)− c(a) ∈ (h(b)−h(a))A.

4.2 The difference quotient converges Mackey

Proposition 4.4. Let c : R→ E be a Lip1-curve. Then the curve 1
t

(
1
t (c(t)− c(0))− c′(0)

)
is bounded on subsets of R \ {0}.

Proof. Apply 4.3 with h = Id to c and obtain:

c(t)− c(0)
t

− c′(0) ∈ 〈c′(r) : 0 < |r| < |t|〉closed,convex − c
′(0)

= 〈c′(r)− c′(0) : 0 < |r| < |t|〉closed,convex

=
〈
r
c′(r)− c′(0)

r
: 0 < |r| < |t|

〉
closed,convex

Let a > 0. Since { c
′(r)−c′(0)

r : 0 < |r| < |a|} is bounded and hence contained in
a closed absolutely convex and bounded set B it follows that

1
t

(
c(t)− c(0)

t
− c′(0)

)
∈
〈
r

t

c′(r)− c′(0)
r

: 0 < |r| < |t|
〉

closed,convex

⊆ B
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