1 Reminder: Convergence of nets in topological spaces

Definition 1.1. A directed system is an index set I together with an ordering \prec which satisfies:

1. If $\alpha, \beta \in I$, then there exists $\gamma \in I$ sth. $\gamma \succ \alpha$ and $\gamma \succ \beta$
2. \prec is a partial ordering (i.e. a reflexive transitive and antisymmetric relation on I)

Definition 1.2. A net in a topological space S is a mapping from a directed system I to S (notation: $\left.\left(x_{\alpha}\right)_{\alpha \in I}\right)$.

Definition 1.3. A net $\left(x_{\alpha}\right)_{\alpha \in I}$ in a topological space S is said to converge to $x \in S$ (notation: $x_{\alpha} \rightarrow x$) if for any neighborhood N oF x there is a $\beta \in I$ s.th. $x_{\alpha} \in N$ if $\alpha \succ \beta$.

2 bornological convergence of nets

In a bornological vector space (bvs) E one has a natural notion of convergence (which depends only on the bornology \mathcal{B}). In many applications one uses convex bornological vector spaces (cbvs).

Definition 2.1. Let $\left(x_{\gamma}\right)_{\gamma \in \Gamma}$ be a net in a cbvs E. We say that $\left(x_{\gamma}\right)_{\gamma \in \Gamma}$ converges bornologically to $0\left(\left(x_{\gamma}\right)_{\gamma \in \Gamma} \rightarrow 0\right)$ if there exists a bounded and absolutely convex set $B \subset E$ and a net $\left(\lambda_{\gamma}\right)_{\gamma \in \Gamma}$ in \mathbb{K} converging to 0 sth. $x_{\gamma} \in \lambda_{\gamma} B$.

Correspondingly, $\left(x_{\gamma}\right)_{\gamma \in \Gamma}$ is said to converge bornologically to $x \in E$ if $\left(x_{\gamma}\right)_{\gamma \in \Gamma}-x \rightarrow 0$. Recall that absolutely convex is equivalent to disked. Furthermore, we define the vector space E_{B} wrt. the disk $B \subset E$ to be the linear span of B, which is equivalent to

$$
E_{B}=\bigcup_{\lambda \in \mathbb{K}} \lambda B
$$

This space is then equipped with the seminorm $p_{B}(x)=\inf \left\{\alpha \in \mathbb{R}_{+} \mid x \in \alpha B\right\}$, inducing a topology on E_{B}. If E is a lcvs and B is bounded additionally, the p_{B} is a norm.

Proposition 2.2 (characterisation of bornological convergence). Let $\left(x_{\gamma}\right)_{\gamma \in \Gamma}$ be a net in a cbvs E. Then $\left(x_{\gamma}\right)_{\gamma \in \Gamma} \rightarrow 0$ if and only if there exists a bounded absolutely convex set $B \subset E$ s.th. $\left(x_{\gamma}\right)_{\gamma \in \Gamma}$ converges to 0 in E_{B} (by which we mean topological convergence).

Convention: If E is a topological vector space, then " \rightarrow " will denote topological convergence while $" \xrightarrow{M}$ " (called Mackey-convergence) refers to bornological convergence wrt. the canonical von Neumann bornology.

Remark 2.3. Let E be a lcvs and $B \subset E$ absolutely convex and bounded. Then the canonical embedding $E_{B} \rightarrow E$ is continous, so bornologically convergent nets (which converge topologically in E_{B}) converge also topologically in E. Generally the converse is false, as seen in the following

Example 2.4. Denote by c_{0} the space of sequences converging to 0 and consider the space $E=\prod_{c_{0}} \mathbb{R}$, endowed with the product topology (which is the topology of pointwise convergence). Define $x_{n} \in E$ by its components $\left(x_{n}\right)_{\mu}:=$ $\mu(n)$. Clearly $\left(x_{n}\right)$ converges to 0 wrt. this topology because it does so in every component. We show that $\left(x_{n}\right)$ is not Mackey convergent: Suppose there is $B \subset E$, bounded and a sequence of reals $\left(\lambda_{n}\right)$ converging to infinity sth. $\left\{\lambda_{n} x_{n}: n \in \mathbb{N}\right\} \subseteq B \Leftrightarrow x_{n} \in 1 / \lambda_{n} B$. Project this on the component κ, given by $\kappa_{n}:=1 / \sqrt{\lambda_{n}} \in c_{0}$. Thus $\left\{\sqrt{\lambda_{n}}: n \in \mathbb{N}\right\} \subseteq p r_{\kappa}(B) \Rightarrow$ Contradiction, since $p r_{\kappa}(B)$ must be bounded in \mathbb{R}. Thus $\left(x_{n}\right)$ cannot be Mackey convergent since B and $\left(\lambda_{n}\right)$ were arbitrary.

Definition 2.5. A net $\left(x_{\gamma}\right)_{\gamma \in \Gamma}$ in a cbvs is called Cauchy net if the net

$$
\left(x_{\gamma}-x_{\gamma^{\prime}}\right)_{\left(\gamma, \gamma^{\prime}\right) \in \Gamma \times \Gamma}
$$

converges to 0 .
Definition 2.6. Let E be a separated topological vector space. $\left(x_{\gamma}\right)_{\gamma \in \Gamma}$ is called Mackey-Cauchy net if it is Cauchy wrt. the von Neumann bornology of E, i.e. there exists $\left(\mu_{\gamma, \gamma^{\prime}}\right)_{\left(\gamma, \gamma^{\prime}\right) \in \Gamma \times \Gamma}$ in \mathbb{R} converging to 0 and $B \subset E$, bounded and absolutely convex s.th. $\left(x_{\gamma}-x_{\gamma^{\prime}}\right) \in \mu_{\gamma, \gamma^{\prime}} B$.

Lemma 2.7. 1. Let E, F be cbvs $f: E \rightarrow F$ be a bounded map. Let further $x_{\gamma} \rightarrow x, y_{\gamma} \rightarrow y$ in E and $\lambda_{\gamma} \rightarrow \lambda$ in \mathbb{K}. Then $x_{\gamma}+y_{\gamma} \rightarrow x+y, \lambda_{\gamma} x_{\gamma} \rightarrow \lambda x$ and $f\left(x_{\gamma}\right) \rightarrow f(x)$.
2. In a lcus every Mackey convergent net is topologically convergent and every Mackey-Cauchy net is a Cauchy net.
3. In a lcs every weakly convergent Mackey-Cauchy net is Mackey convergent.

Finally we can make a statement about the uniqueness of bornologically convergent nets in separated cbvs (recall that in a separated bornology $\{0\}$ is the only bounded vector subspace):

Proposition 2.8. A cbvs is separated iff every convergent net has a unique limit.

3 Completeness

Similarly to topological notions, one defines a bornological space to be complete if every bornological Cauchy sequence converges. In particular

Definition 3.1. A lcvs E in which every Mackey-Cauchy sequence converges bornologically is called Mackey complete.

Proposition 3.2. For a lcvs E the following conditions are equivalent:

1. Every Mackey-Cauchy net converges topologically in E
2. Every Mackey-Cauchy sequence converges topologically in E
3. For every absolutely convex closed bounded set B the space E_{B} is complete
4. For every bounded set B there exists an absolutely convex bounded set $B^{\prime} \supseteq B$ s.th. $E_{B^{\prime}}$ is complete.

Proof. 1. $\Rightarrow 2$. and $3 . \Rightarrow 4$. are clear.
2. \Rightarrow 3.: Let $\left(x_{n}\right)$ be Cauchy in E_{B}. Since E_{B} is normed, it suffices to show sequential completeness. By prop. 2.2, $\left(x_{n}\right)$ is Mackey-Cauchy in E and converges to some $x \in E$ by assumption. Since $p_{B}\left(x_{n}-x_{m}\right) \rightarrow 0$, given $\epsilon>0$ we find $N(\epsilon) \in \mathbb{N}$ s.th. $p_{B}\left(x_{n}-x_{m}\right)<\epsilon$ whenever $n, m>N(\epsilon)$ and thus $x_{n}-x_{m} \in \epsilon B$. Now $x_{n}-x \in \epsilon B$ for all $n>N(\epsilon)$ since B is closed. In particular $x \in E_{B}$ and thus $x_{n} \rightarrow x$ in E_{B}.
4. $\Rightarrow 1 .:$ Let $\left(x_{\gamma}\right)_{\gamma \in \Gamma}$ be Mackey-Cauchy in E. There is some $\mu_{\gamma, \gamma^{\prime}} \rightarrow 0$ in \mathbb{R} s.th. $\left(x_{\gamma}-x_{\gamma^{\prime}}\right) \in \mu_{\gamma, \gamma^{\prime}} B$ for some B bounded. Let γ_{0} be arbitrary and choose B to be absolutely convex, to contain $x_{\gamma_{0}}$ and s.th. E_{B} is complete by (4.). For $\gamma \in \Gamma$ we have $x_{\gamma}=x_{\gamma_{0}}+x_{\gamma}-x_{\gamma_{0}} \in x_{\gamma_{0}}+\mu_{\gamma, \gamma_{0}} B \subset E_{B}$ and $p_{B}\left(x_{\gamma}-x_{\gamma^{\prime}}\right) \leq \mu_{\gamma, \gamma^{\prime}} \rightarrow 0$. Thus $\left(x_{\gamma}\right)$ is Cauchy in E_{B} and converges in E_{B} and therefore in E.

The following proposition establishes the equivalence of Mackey convergence and topological convergence in lcvs:

Proposition 3.3. In a lcvs a Mackey-Cauchy net converges bornologically in E (i.e. E is Mackey complete) iff it converges topologically in E.

Remark 3.4. Since Mackey-Cauchy sequences of a lcvs are special Cauchy sequences, it follows from the last proposition and the equivalence $1 . \Leftrightarrow 2$. before that a sequentially complete lcvs is Mackey complete, so Mackey completeness is a weaker condition. Example: space of distributions

4 Lipschitz curves and Mackey convergence of the difference quotient

Definition 4.1. Let E be a lcvs. A curve $c: \mathbb{R} \rightarrow E$ is called differentiable if the derivative $c^{\prime}(t):=\lim _{s \rightarrow 0}(c(t+s)-c(t)) / s$ at t exists for all t. c is called smooth or C^{∞} if all iterated derivatives exist. It is called C^{n} for $n<\infty$ if its iterated derivatives up to order n exist and are continous.

Definition 4.2. A curve $c: \mathbb{R} \rightarrow E$ is called locally Lipschitzian if every point $r \in \mathbb{R}$ has a neighborhood U sth. the Lipschitz codition is satisfied on U, i.e. the set $\left\{\frac{1}{t-s}(c(t)-c(s)): t \neq s ; t, s \in U\right\}$ is bounded.

This implies that for c the Lipschitz condition is satisfied on each bounded interval since for increasing t_{i}

$$
\frac{c\left(t_{n}\right)-c\left(t_{0}\right)}{t_{n}-t_{0}}=\sum \frac{t_{i+1}-t_{i}}{t_{n}-t_{0}} \frac{c\left(t_{i+1}\right)-c\left(t_{i}\right)}{t_{i+1}-t_{i}}
$$

lies in the absolutely convex hull of a finite union of bounded sets. $c: \mathbb{R} \rightarrow E$ is called $\mathcal{L} i p^{k}$ if all derivatives up to order k exist and are locally Lipschitzian.

4.1 Mean value theorem

Motivation: For curves c with values in a finite dimensional space there is a generalised version of the mean value theorem in one dimension, namely for an additional function $h: \mathbb{R} \rightarrow \mathbb{R}$ with nonvanishing derivative we have that $\frac{c(a)-c(b)}{h(a)-h(b)}$ lies in the closed convex hull of $\left\{c^{\prime}(r) / h^{\prime}(r): r\right\}$

Proposition 4.3. Let $c: I:=[a, b] \rightarrow E$ be a continous curve which is differentiable except at points in a countable subset $D \subseteq I$. Let h be a continous monotone function $h: I \rightarrow \mathbb{R}$ which is differntiable on $I \backslash D$. Let A be a convex closed subset of E sth. $c^{\prime}(t) \in h^{\prime}(t) A$ for all $t \notin D$. Then $c(b)-c(a) \in(h(b)-h(a)) A$.

4.2 The difference quotient converges Mackey

Proposition 4.4. Let $c: \mathbb{R} \rightarrow E$ be a \mathcal{L} ip ${ }^{1}$-curve. Then the curve $\frac{1}{t}\left(\frac{1}{t}(c(t)-c(0))-c^{\prime}(0)\right)$ is bounded on subsets of $\mathbb{R} \backslash\{0\}$.

Proof. Apply 4.3 with $h=\mathrm{Id}$ to c and obtain:

$$
\begin{aligned}
\frac{c(t)-c(0)}{t}-c^{\prime}(0) & \in\left\langle c^{\prime}(r): 0<\right| r|<|t|\rangle_{\text {closed,convex }}-c^{\prime}(0) \\
& =\left\langle c^{\prime}(r)-c^{\prime}(0): 0<\right| r|<|t|\rangle_{\text {closed,convex }} \\
& =\left\langle r \frac{c^{\prime}(r)-c^{\prime}(0)}{r}: 0<\right| r|<|t|\rangle_{\text {closed,convex }}
\end{aligned}
$$

Let $a>0$. Since $\left\{\frac{c^{\prime}(r)-c^{\prime}(0)}{r}: 0<|r|<|a|\right\}$ is bounded and hence contained in a closed absolutely convex and bounded set B it follows that

$$
\frac{1}{t}\left(\frac{c(t)-c(0)}{t}-c^{\prime}(0)\right) \in\left\langle\frac{r}{t} \frac{c^{\prime}(r)-c^{\prime}(0)}{r}: 0<\right| r|<|t|\rangle_{\mathrm{closed}, \mathrm{convex}} \subseteq B
$$

