
Chapter 1

Bornology

1.1 Definitions

1.1.1

A bornology on a set X is a family B of subsets of X satisfiying the following axioms:

B is covering of X
B is hereditary under inclusion
B is stable under finite union

(X,B) is called a bornological set, and the elements of B are called bounded subsets of X.

A base of a bornology B is a subfamily B0 of B, such that each element of B is a subset of an ele-
ment of B0.

1.1.2

Let E be a VS over K.
A bornology B on E is called a vector bornology on E if:

B is stable under vector addition
B is stable under homothetic transformations
B is stable under formation of circled hulls

(E,B) is called a bornological vector space.

1.1.3

A vector bornology B is called a convex vector bornology if it is stable under formation of convex hulls.

(E,B) is called a convex bornological (vector) space.
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1.1.4

A separated bornological vector space (E,B) is a bornological VS, for which {0} is the only bounded
subVS of E.

1.2 Bounded Linear Maps

A map u between two bornological set X, Y is called a bounded map, if the image of each bounded subset
of X is a bounded subset of Y .

A bornology B1 on a set X is called a finer bornology than a bornology B2 on X, if id : (E, B1) → (E,B2)
is bounded.

A bijection u between two bornological sets X,Y is called a bornological isomorphism if u and u−1

are bounded.

1.2.1

A bounded linear functional on a bornological VS E over K is a bounded linear map of E into K,
endowed with the bornology defined by the absolute value.

1.3 Fundamental Examples of Bornologies

Example 1:
Let K be a field with an absolute value. The family of subsets which are boundeed in respect to the absolute
value is a convex bornology on K. It is called the canonical bornology of K.

Example 2:
Let E be a VS over K and let p be a seminorm on E. The collection of subsets A of E for which p(A)
is bounded in K is called the canonical bornology of the seminormed space (E, p). Note that this
bornology is separated iff p is a norm.

Example 3:
Let Γ = {pi} be a collection of seminorms on E. Then the collection of subsets A of E for which pi(A) is
boundede in K is a bornology on E. It is calles the bornology defined by Γ. It is separated iff Γ separates
E.

Example 4:
Let E be a toplogical VS. Then the collection of subsets A of E which are absorbed by each neighborhood
of 0 is a vector bornology on E. It is called the von Neumann bornology B of E.

If E is locally convex, then so is B.

Example 5:
Let E be a topological Hausdorff space. Then the family of relatively compact subsets of E is a vector
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bornology on E, with the family of closed subsets of E as a base. It is called the compact bornology of a
topological space.

Example 6:
Let E be a topological Hausdorff space. The family of subsets of compacts disks in E is a convex bornology
on E. It is called the bornology of compact disks of a topological space.

Example 7:
Let E, F be topological VS. By L(E, F ) we denote the vector space of all continuous linear maps of
E into F .

A subset H of L(E, f) is called equicontinuous if:
For all neighborhoods V of 0, V ∈ F , H−1 :=

⋂
u∈H u−1(V ) is a neighborhood of 0 in E.

The family K of equicontinuous subsets of L(E,F ) is a vector bornology on L(E,F ). K is called the
equicontinuous bornology of L(E, F ), and it is convex if F is locally convex.

Since every element of L(E, F ) is continuous, K covers L(E,F ) and is hereditary under inclusion and
finite union.

Let V be a base of circled neighborhoods in F . Then ∀V ∈ V : ∃W ∈ V|W + W ⊂ V
Let be H1,H2 ∈ K, then H−1

1 (W ) and H−1
2 (W ) are neighborhoods of zero in E.

H−1
1 (W ) ∩H−1

2 (W ) ⊂ (H1 + H2)−1(V ), so (H1 + H2)−1(V ) is an open neighborhood of 0 in E.
Since V is an arbitrary element of a base of F , K is stable under vector addition.

K is also stable under homothetic transformations since
(λH)−1(V ) = 1

λH−1(V )

If H1 is the circled hull of H, it is H−1(V ) ⊂ H−1
1 (V ), so K is stable under formation of circled hulls.

Let F be locally convex, and V be a disked convex base of F .
Let be x ∈ H−1(V ∈ V). Then

∑
i λihi(x) ∈ V , since V is convex. It follows that H−1(V ) ⊂ (ΓH)−1(V ),

so K is convex.

Example 8:
let X be a set, σ a family of subsets of X, and (F, B) a bornological set.
A family C of maps of X into F is called σ-bounded, if C(A) is bounded in (F, B) for every A ∈ σ.

Let H be a subset of all maps of X into F . If all points in H are σ-bounded, the σ-bounded subsets
of H define a bornology on H called the σ-bornology.
If (X,σ) is a bornological set, this is called the natural bornology on H.
A subset of H which is bounded in respect to the natural bornology is called equibounded.
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Chapter 2

Topology-Bornology: Internal Duality

2.1 Compativle Topologies and Bornologies

2.1.1

Let E be a VS. Then let B be a bornology on E and let J be a vector topology on E.

B and J are called compatible if B is finer than the von Neumann bornology of (E, J).

2.1.2

A subspace of a bornological VS (E, B) is called a bornivorous subset if it absorbs every bounded set of E.

Let E be a convex bornological space and let V be the family of all bornivorous disks in E.

We are going to show that V is a base for the finest locally convex topology J on E compatible with
the bornology of of E.

The members of V are by definition absorbent, convex and circled. V is clearly stable under homoth-
etic transformation and finite intersections, so V is the base of a locally convex topology on E. Every
bounded subset of E is bounded in the von Neumann bornology of (E, J).

If J ′ is a locally convex topology on E which is compatible with B, it has a base of bornivorous disks
and so J is finer than J ′.

The topology J is called the locally convex topology associated with the bornology B of E.
E, endowed with that topology is denoted by TE.

2.1.3

Let (E, J) be a locally convex space. Then by definition the von Neumann bornology of (E, J) is the coarsest
convex bornology on E compatible with J .
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E, endowed with the von Neumann bornology, will be denoted by BE.

2.1.4

The bornology of BTE is always coarser than the bornology of E. It is called the weak bornology of E.

Proposition:
A bornology on E and its weak bornology are equal iff the bornology of E is a von Neumann bornology of
a locally convex space.

The necessity is obvious, but to prove the sufficiency, we first need to prove the following lemma:

Lemma:
For every locally convex space F , it is BF = BTBF

Proof:
Since id : TBF → F is continous, id : BTBF → BF is bounded.

Conversely, if V is a bounded subset of of BF , it is absorbed by each neighborhood of zero of TBF ,
and therefore is bounded in BTBF

The lemma proofs the proposition.

A convex bornology on E is called a topological bornology if E = BTE, i.e. if it is the von Neumann
bornology of a locally convex space.

2.1.5

Let (E, J) be a locally convex space. Then the topology of TBE is always finer than J .

Proposition:
Let E be a locally convex space. Then E = TBE iff the topology of E is the locally convex topology
associated with a convex bornology on E.

Proof :
The nessecity is obvious. To proove the sufficiency, we first proof the following Lemma:

Lemma:
For each convex bornological space F , it is TF = TBTF

Proof :
Since id : F → BTF is bounded, id : TF → TBTF is continuous.

Conversely, let V be a neighborhood of 0 in TF , then it is a union of bornivorous disks. Since the bounded
subsets in BTF are those sets absorbed by each neighborhood of zero in TF , V is a union of bornivorous
discs in respect to BTF in is therefore open in TBTF .

5



The Lemma proofs the proposition.

Let E be a locally convex space. The topology of E is called a bornological topology, if E = TBE.

Proposition:
Every metrizable locally convex topology E is bornological.

Proof :
We have to show that E = TBE. Since TBE is always finer than E, it suffices to show that id : E → TBE
is continuous.
This equivalent to show that every bornivorous disk of BE is a neighborhood of zero in E.

Such a disk absorbs all sequences which converge to 0, and therefore is a neighborhood in E, by the following
Lemma:

Lemma:
In a metrizable topological VS E, every circled set which absorbs all sequences converging to 0 is a neigh-
borhood of 0.

2.2 Characterisation of Bornological Topologies

2.2.1

Let E, F be locally convex spaces, and let u be a linear map u : E → F .

If u is continuous, it is bounded in respect to BE, BF . The converse is not true in general.

2.2.2

We will show that the locally convex topologies for which each bounded linear map into a LCS is continuous
are exactly the bornological topologies.

Proof :
Let E be a LCS.

Assume E to be a bornological LCS and u to be a linear map u : E → F .
The for each disked neighborhood V of zero in F , u−1(V ) is abornivorous disk in E, and therefore a neigh-
borhood of zero in E, since E = TBE.

Suppose every bounded (i.r.t. the von Neumann bornology) linear map u : E → F is continuous. Since
the identity id : BE → BTBE is bounded, and therefore id : E → TBE is continuous. This leads to the
topological identity TBE = E.
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