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1 Remainder
Definition 1. convenient vector space

Definition 2. c∞-topology

Remark 1 (on c∞-open sets). Let E be a bornological locally convex vector space, U ⊆ E a
convex subset. Then U is open for the locally convex topology of E if and only if U is open for
the c∞-topology. Furthermore, an absolutely convex subset U of E is a 0-neighborhood for the
locally convex topology if and only if it is so for the c∞-topology.

Proof. (⇒) The c∞-topology is finer than the locally convex topology.
(⇐) Let first U be an absolutely convex 0-neighborhood for the c∞-topology. Hence, U ab-
sorbs Mackey-0-sequences. Since a locally convex vector space is bornological if and only if
every absolutely convex bornivorous subset is a 0-neighborhood, we have to show that U is
bornivorous. Then it would follow that U is a 0-neighborhood for the locally convex topology.

That U is bornivorous follows from the fact that U absorbs all sequences converging
Mackey to 0. This is a consequence of the simple lemma:

Lemma 3. For a seminorm p the following statements are equivalent:

1. p is bounded;

2. p is bounded on compact sets;

3. p is bounded on M -converging sequences;

Let now U be convex and c∞-open, let x ∈ U be arbitrary. We consider the c∞- open
absolutely convex set W .

= (U −x)∩ (x−U) which is a 0-neighborhood of the locally convex
topology by the argument above. Then x ∈ W + x ⊆ U . So U is open in the locally convex
topology.

Theorem 4. Let f : R2 → R be an arbitrary mapping. Then all iterated partial derivatives
exist and are locally bounded if and only if the associated mapping f∨ : R→ C∞(R,R) exists
as a smooth curve, where C∞(R,R) is considered as the Fréchet space with the topology of
uniform convergence of each derivative on compact sets. Furthermore, we have (∂1f)∨ =
d(f∨) and (∂2f)∨ = d ◦ f∨.

Theorem 5. [Boman, 1967] For a mapping f : R2 → R the following assertions are equiva-
lent:



2 Consequences of cartesian closedness

1. All iterated partial derivatives exist and are continuous.

2. All iterated partial derivatives exist and are locally bounded.

3. For v ∈ R2 the iterated directional derivatives:

dnvf(x) :=

(
∂

∂t

)n ∣∣∣
t=0

(f(x+ tv)) (1)

exist and are locally bounded with respect to x.

4. For all smooth curves c : R→ R2 the composite f ◦ c is smooth.

Definition 6. We define C∞(R, E) to be the locally convex vector space of all smooth curves
into E, with the pointwise vector operations, and with the topology of uniform convergence
on compact sets of each derivative separately.

Theorem 7. For a mapping f : R2 → E into a locally convex space (which need not be
c∞-complete) the following assertions are equivalent:

1. f is smooth along smooth curves.

2. All iterated directional derivatives dpvf exist and are locally bounded.

3. All iterated partial derivatives ∂αf exist and are locally bounded.

4. f∨ : R→ C∞(R, E) exists as a smooth curve.

Definition 8. A mapping f : E ⊇ U → F defined on a c∞-open subset U is called smooth (or
C∞) if it maps smooth curves in U to smooth curves in F . By C∞(U, F ) we shall denote the
locally convex space of all smooth mappings U → F with pointwise linear structure and the
initial topology with respect to all mappings c∗ : C∞(U, F )→ C∞(R, F ) for c ∈ C∞(R, U).

Remark 2. For U = E = R this coincides with our old definition.

Theorem 9. Let Ui ⊆ Ei be c∞-open subsets in locally convex spaces, which need not be c∞-
complete. Then a mapping f : U1×U2 → F is smooth if and only if the canonically associated
mapping f∨ : U1 → C∞(U2, F ) exists and is smooth.

2 Consequences of cartesian closedness
Corollary 10. Let E,F,G, . . . be locally convex spaces, and let U, V be c∞-open subsets of
such. Then the following canonical mappings are smooth:

1. ev : C∞(U, F )× U → F , (f, x) 7→ f(x)

2. ins : E → C∞(F,E × F ), x 7→ (y 7→ (x, y))

3. (•)
∧ : C∞(U, C∞(V,G))→ C∞(U × V,G)

4. (•)
∨ : C∞(U × V,G)→ C∞(U, C∞(V,G))

5. comp : C∞(F,G)× C∞(U, F )→ C∞(U,G), (f, g) 7→ f ◦ g
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6. C∞(•, •) : C∞(E2, E1)× C∞(F1, F2)→ C∞(C∞(E1, F1), C∞(E2, F2)),
(f, g) 7→ (h 7→ g ◦ h ◦ f)

7.
∏

:
∏
C∞(Ei, Fi)→ C∞(

∏
Ei,
∏
Fi), for any index set.

Proof. (1) The mapping associated to ev via cartesian closedness is the identity on C∞(U, F ),
which is C∞, thus ev is also C∞.
(2) The mapping associated to ins via cartesian closedness is the identity on E×F , hence ins
is C∞.
(3) The mapping associated to (.)∧ via cartesian closedness is the smooth composition of eval-
uations ev ◦ (ev × Id) : (f ;x, y) 7→ f(x)(y).
(4) We apply cartesian closedness twice to get the associated mapping (f ;x; y) 7→ f(x, y),
which is just a smooth evaluation mapping.
(5) The mapping associated to comp via cartesian closedness is (f, g;x) 7→ f(g(x)), which is
the smooth mapping ev ◦ (Id× ev).
(6) The mapping associated to the one in question by applying cartesian closedness twice is
(f, g;h, x) 7→ g(h(f(x))), which is the C∞-mapping ev ◦ (Id× ev) ◦ (Id× Id× ev).
(7) Up to a flip of factors the mapping associated via cartesian closedness is the product of the
evaluation mappings C∞(Ei, Fi)× Ei → Fi.

Example 1 (after [1]). Consider the evaluation ev : E ×E∗ → R, where E is a locally convex
space and E∗ is it’s dual of continuous linear functionals equipped with any locally convex
topology. Let us assume that the evaluation is jointly continuous. Then there are neighborhoods
U ⊆ E and V ⊆ E∗ of zero such that ev(U×V ) ⊆ [−1, 1]. But then U is contained in the polar
of V , so it is bounded in E, and so E admits a bounded neighborhood and is thus normable.

Definition 11. Given a dual pair (X, Y ) the polar set or polar of a subset A of X is a set A◦ in
Y defined as:

A◦ := {y ∈ Y : sup{|〈x, y〉| : x ∈ A} ≤ 1} (2)

Corollary 12 (Boman, 1967). The smooth mappings on open subsets of Rn in the sense of
definition 8 are exactly the usual smooth mappings.

Proof. (⇒) If f : Rn → F is smooth then by cartesian closedness 9, for each coordinate the
respective associated mapping f∨i : Rn−1 → C∞(R, F ) is smooth, so again by 8 we have
∂if = (d∗f

∨i)∧ , so all first partial derivatives exist and are smooth. Inductively, all iterated
partial derivatives exist and are smooth, thus continuous, so f is smooth in the usual sense.
(⇐) Obviously, f is smooth along smooth curves by the usual chain rule.

Definition 13. By L(E,F ) we denote the space of all bounded (equivalently smooth) linear
mappings from E to F . It is a closed linear subspace of C∞(E,F ) since f is linear if and only
if for all x, y ∈ E and λ ∈ R we have (evx + λevy − evx+λy)f = 0. We equip it with this
topology and linear structure.

Theorem 14 (Chain rule). Let E and F be locally convex spaces, and let U ⊆ E be c∞-open.
Then the differentiation operator:

d : C∞(U, F )→ C∞(U,L(E,F )), (3)

df(x)v := lim
t→0

f(x+ tv)− f(x)

t
, (4)
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exists, is linear and bounded (smooth). Also the chain rule holds:

d(f ◦ g)(x)v = df(g(x))dg(x)v. (5)

Proof. We want to show that d∧∧ : C∞(U, F )× U × E → F is smooth, so let (f, x, v) : R→
C∞(U, F )× U × E be a smooth curve. Then

d∧∧(f(t), x(t), v(t)) = lim
s→0

f(t)(x(t) + sv(t))− f(t)(x(t))

s
= ∂2h(t, 0), (6)

which is smooth in t, where the smooth mapping h : R2 → F is given by (t, s) 7→ f∧(t, x(t) +
sv(t)). By cartesian closedness 9 the mapping d∧ : C∞(U, F ) × U → C∞(E,F ) is smooth.
Now we show that this mapping has values in the subspace L(E,F ). It is easy to see that
d∧(f, x) ∈ C∞(E,F ) is homogeneous. It is additive, because we may consider the smooth
mapping f̃ : (t, s) 7→ f(x+ tv + sw) and compute as follows, using 12.

df(x)(v + w) = df̃(0, 0) =
∂

∂t
f̃(0, 0) +

∂

∂s
f̃(0, 0) = (7)

=
∂

∂t

∣∣
0
f(x+ tv + 0w) +

∂

∂t

∣∣
0
f(x+ 0v + tw) = df(x)v + df(x)w. (8)

So we see that d∧ : C∞(U, F ) × U → L(E,F ) is smooth, and the mapping d : C∞(U, F ) →
C∞(U,L(E,F )) is smooth by 9 and obviously linear. We first prove the chain rule for a smooth
curve c instead of g. We have to show that the curve

t 7→
{

f(c(t))−f(c(0))
t

for t 6= 0
df(c(0)).c′(0) for t = 0

(9)

is continuous at 0. It can be rewritten as t 7→
∫ 1

0
df(c(0) + s(c(t)− c(0))).c1(t)ds, where c1 is

the smooth curve given by

t 7→
{

c(t)−c(0)
t

for t 6= 0
c′(0) for t = 0

(10)

Since h : R2 → U × E given by

(t, s) 7→ (c(0) + s(c(t)c(0)), c1(t)) (11)

is smooth, the map h̃ = (d∧∧ ◦ h)∨ is also smooth. It is given explicitely by: h̃ : t 7→
(s 7→ df(c(0) + s(c(t)− c(0))).c1(t)). It is smooth map R → C∞(R, F ), and hence a map
c̃ : t 7→

∫
h̃(t) is also smooth, and therefore continuous (since this is a smooth curve). This

ends the proof of the chain rule for c, because c̃ is the curve from (9), namely: c̃ : t 7→∫ 1

0
df(c(0) + s(c(t)− c(0))).c1(t)ds. For general g we have:

d(f ◦ g)(x)(v) =
∂

∂t

∣∣
0
(f ◦ g)(x+ tv) (12)

We can take c(t) = g(x+ tv) and use the previous result to conclude that:

d(f ◦ g)(x)(v) = d(f ◦ c)(0).0 = df(c(0))c′(0) = (13)

= (df)(g(x+ 0v))

(
∂

∂t

∣∣
0
(g(x+ tv))

)
= (df)(g(x))(dg(x)(v)) (14)
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3 Bounded multilinear mappings
Why take L(E,F ) as bounded linear mappings? The reason for this is the Uniform Bounded-
ness Principle. It is very important for convenient calculus. Essentially it says that on L(E,F )
the canonical and pointwise bornologies concide if E, F are convenient vector spaces. As a
remeinder:

Definition 15. The canonical bornology has as bounded sets B ⊆ L(E,F ) such that B(A) is
bounded in F for all A, bounded in E.
The pointwise bornology has as bounded sets B ⊆ L(E,F ) which satisfy B(a) bounded in F
for all a ∈ E.

In other words, there is essentially one bornology on L(E,F ) but different, non-equivalent
topologies. The category of all smooth mappings between bornological vector spaces is a
subcategory of the category of all smooth mappings between locally convex spaces which is
equivalent to it, since a locally convex space and its bornologification have the same bounded
sets and smoothness depends only on the bornology. So it is also cartesian closed, but the
topology on C∞(E,F ) from 8 has to be bornologized. The next example shows that indeed,
this topology is in general not bornological.

Example 2 (after [2], 5.4.19). The locally convex topology of C∞(R,R(N)) is not bornological.

Proof. In order to see this we consider the linear functional ` : C∞(R,R(N)) → R defined by
`(f)

.
=
∑
k∈N

(prk ◦ f)(k)(0). For any bounded subset B ⊆ C∞(R,R(N)) there exists an N ∈ N

such that B ⊆ C∞(R,RN). Hence on such a set B the functional ` is a fnite sum of derivatives
at 0 composed with projections prk and thus is a bornological (bounded) map. But ` cannot be
continuous w.r.t. locally convex topology of C∞(R,R(N)), because otherwise there would exist
an N ∈ N and a 0-neighbourhood U ⊆ R(N) s.t. f (k)(t) ∈ U fot k < N and |t| ≤ N would
imply |`(f)| ≤ 1. This is impossible, since among all functions f satisfying f (k)(t) ∈ U for
k < N and |t| ≤ N there are such with only the projection fN

.
= prN ◦ f unequal 0 and N -th

derivative of fN at 0 larger than 1.

Proposition 16. Exponential law for L. There are natural bornological isomorphisms:

L(E1, . . . , En+k;F ) ∼= L(E1, . . . , En;L(En+1, ..., En+k;F )) (15)

Proof. (for bilinear mappings, the general case is completely analogous). Bilinearity translates
into linearity into the space of linear functions. It remains to prove boundedness. So let B ⊆
L(E1, E2;F ) be given. Then B is bounded if and only if B(B1 × B2) ⊆ F is bounded for all
boundedBi ⊆ Ei. This however is equivalent to B∨(B1) is contained and bounded in L(E2, F )
for all bounded B1 ⊆ E, i.e. B∨ is contained and bounded in L(E1, L(E2, F )).

Lemma 17. A subset is bounded in L(E,F ) ⊆ C∞(E,F ) if and only if it is uniformly bounded
on bounded subsets of E, i.e. L(E,F )→ C∞(E,F ) is initial.

Proof. LetB ⊆ L(E,F ) be bounded in C∞(E,F ), and assume that it is not uniformly bounded
on some bounded set B ⊆ E. So there are fn ∈ B, bn ∈ B, and ` ∈ F ∗ with |`(fn(bn))| ≥ nn.

Definition 18. We say that a sequence xn in a locally convex space E converges fast to x in E,
if for each k ∈ N the sequence nk(xn − x) is bounded.
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Lemma 19. (Special curve lemma) Let xn be a sequence which converges fast to x in E. Then
the infinite polygon through the xn can be parameterized as a smooth curve c : R → E such
that c( 1

n
) = xn and c(0) = x.

The sequence n1−nbn converges fast to 0, and hence lies on some compact part of a
smooth curve c by the special curve lemma. So B cannot be bounded, since otherwise
C∞(`, c) = `∗ ◦ c∗ : C∞(E,F ) → C∞(R,R) → `∞(R,R) would have bounded image, i.e.
{` ◦ fn ◦ c : n ∈ N} would be uniformly bounded on any compact interval.
Conversely, let B ⊆ L(E,F ) be uniformly bounded on bounded sets and hence in particular
on compact parts of smooth curves. We have to show that dn ◦ c∗ : L(E,F ) → C∞(R, F ) →
`∞(R, F ) has bounded image. But for linear smooth maps we have by the chain rule, recur-
sively applied, that dn(f ◦ c)(t) = f(c(n)(t)), and since c(n) is a smooth curve, the conclusion
follows.

Lemma 20. (Bounded multilinear mappings are smooth). Let f : E1 × . . . × En → F be a
multilinear mapping. Then f is bounded if and only if it is smooth. For the derivative we have
the product rule:

df(x1, . . . , xn)(v1, . . . , vn) =
n∑
i=1

f(x1, . . . , xi−1, vi, xi+1, . . . , xn) (16)

In particular, we get for f : E ⊇ U → R, g : E ⊇ U → F and x ∈ U , v ∈ E the Leibniz
formula

(f · g)′(x)(v) = f ′(x)(v) · g(x) + f(x) · g′(x)(v) (17)

Proof. We use induction on n. The case n = 1 follows, since a linear mappingE → F between
locally convex vector spaces is bounded (or bornological) if and only if it maps smooth curves
in E to smooth curves in F . The induction goes as follows:
f is bounded⇔ f(B1 × . . . × Bn) = f∧(B1 × . . . × Bn−1)(Bn) is bounded for all bounded
sets Bi in Ei ⇔ f∨(B1 × . . . × Bn−1) ⊆ L(En, F ) ⊆ C∞(En, F ) is bounded, by 17;⇔ f∨ :
E1× . . .×En−1 → C∞(En, F ) is bounded;⇔ f∨ : E1× . . .×En−1 → C∞(En, F ) is smooth
by the inductive assumption; ⇔ f : E1 × . . . × En → F is smooth by cartesian closedness
.

4 Spaces of smooth mappings
Proposition 21. Let M be a smooth finite dimensional paracompact manifold. Then the space
C∞(M,R) of all smooth functions on M is a convenient vector space in any of the following
(bornologically) isomorphic descriptions:

1. The initial structure with respect to the cone

C∞(M,R)
c∗−→ C∞(R,R) (18)

for all c ∈ C∞(R,M).

2. The initial structure with respect to the cone

C∞(M,R)
(u−1
α )∗−−−−→ C∞(Rn,R) , (19)

where (Uα, uα) is a smooth atlas with uα(Uα) = Rn.
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3. The initial structure with respect to the cone

C∞(M,R)
jk−→ C(Jk(M,R)) (20)

for all k ∈ N, where Jk(M,R) is the bundle of k-jets of smooth functions on M , where
jk is the jet prolongation, and where all the spaces of continuous sections are equipped
with the compact open topology.

It is easy to see that the cones in (2) and (3) induce even the same locally convex topology
which is sometimes called the compact C∞ topology, if C∞(Rn,R) is equipped with its usual
Fréchet topology.

For a smooth separable finite dimensional Hausdorff manifold M we denote by C∞c (M,R)
the vector space of all smooth functions with compact supports in M .

Proposition 22. The following convenient structures on the space C∞c (M,R) are all isomor-
phic:

1. Let C∞K (M,R) be the space of all smooth functions on M with supports contained in the
fixed compact subset K ⊆ M , a closed linear subspace of C∞(M,R). Let us consider
the final convenient vector space structure on the space C∞c (M,R) induced by the cone

C∞K (M,R)→ C∞c (M,R) (21)

where K runs through a basis for the compact subsets of M . Then the space C∞c (M,R)
is even the strict inductive limit of a sequence of spaces C∞K (M,R).

2. We equip C∞c (M,R) with the initial structure with respect to the cone:

C∞c (M,R)
e∗−→ C∞c (R,R) , (22)

where e ∈ C∞prop(R,M) runs through all proper smooth mappings R → M , and where
C∞c (R,R) carries the usual inductive limit topology on the space of test functions, with
steps C∞I (R,R) for compact intervals I .

3. The initial structure with respect to he cone

C∞c (M,R)
jk−→ Cc(J

k(M,R)) (23)

for all k ∈ N, where Jk(M,R) is the bundle of k-jets of smooth functions on M , where
jk is the jet prolongation, and where the spaces of continuous sections with compact
support are equipped with the inductive limit topology with steps CK(Jk(M,R)).

5 Remarks on c∞-topology
The c∞-topology of a product. Consider the product E × F of two locally convex vector
spaces. Since the projections onto the factors are linear and continuous, and hence smooth,
we always have that the identity mapping c∞(E × F ) → c∞(E) × c∞(F ) is continuous. It is
not always a homeomorphism: Just take a bounded separately continuous bilinear functional,
which is not continuous (like the evaluation map) on a product of spaces where the c∞-topology
is the bornological topology. However, if one of the factors is finite dimensional the product is
well behaved:
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Proposition 23. For any locally convex space E the c∞-topology of E × Rn is the product
topology of the c∞-topologies of the two factors, so that we have c∞(E ×Rn) = c∞(E)×Rn.

Proposition 24. Let E and F be bornological locally convex vector spaces. If there exists a
bilinear smooth mapping m : E × F → R that is not continuous with respect to the locally
convex topologies, then c∞(E × F ) is not a topological vector space.

Corollary 25. Let E be a non-normable bornological locally convex space. Then c∞(E ×E ′)
is not a topological vector space.
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