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1 Introduction

1.1 Why is co-dimensional interesting?

1. Mathamatics:

e Calculus beyond Banach spaces
e Infinite dimensional manifolds
e Infinite dimensional Lie groups:

— infinite-dimensional Lie theory
— homotopy groups
— extensions

2. Physics:

e (lassical field theory: variational calculus, functional derivatives, space of local
functionals

e Quantum field theory: various spaces of functionals, functional derivatives, notion
of convergence in the space of functional (what is a "nice" topology?).

e Infinite dimensional Lie groups: gauge group, diffeomorphism group of a manifold.

1.2 Functional analysis remainder

Definition 1. A topological space is a set X in which a collection 7 of subsets (called open
sets) has been specified, with the following properties:

e XeErT
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o the intersection of any two open setsisopen: U NV € rfor U,V € 7
e the union of every collection of open sets is open:

U U, € TforU, € TVa € A.
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Definition 2. A function f : X — Y, where X and Y are topological spaces, is continuous if
and only if for every open set V' C Y, the inverse image:

V) ={zeX|f) eV} )
is open.

Definition 3. Topological vector space: a pair (X, 7), where 7 is a topology on a vector space
X such that:

e cvery point of X is a closed set
e the vector space operations are continuous with respect to 7.
Definition 4. Let F be a vector space over a field K = CorRand A, B C E:
1. Ais called circled if VA € K, |A\| <1: XA C A.
2. Ais called balanced if YA € K, [\| =1: AA C A.
3. Ais said to absorb B if there exists a A > 0 with [0, \] - B C A.
4. Ais called absorbent if Vo € E': A absorbs {z}.

5. Aiscalled convexif R 5 A\, Ao > 0, Ay + X = 1, 21, x5 € Aimplies: \jxq + Aoz € A.
6. A is called absolutely convex if \y,..., A\, € K. > |\ < 1, 2q,...,2, € Aimplies
=1

=1

Definition 5. A local base of a topological vector space X is thus a collection 4, of neighbor-
hoods of 0 such that every neighborhood of 0 contains a member of Z. The open sets of X are
then precisely those that are unions of translates of members of Z.

Definition 6. Types of topological vector spaces. In the following definitions, X always de-
notes a topological vector space, with topology 7.

1. X is locally convex if there is a local base Z whose members are convex.

2. X is locally bounded if 0 has a bounded neighborhood.

3. X is locally compact if 0 has a neighborhood whose closure is compact.

4. X is metrizable if 7 is compatible with some metric d.

5. X is a Fréchet space if X is a complete locally convex space with a metrizable topology

6. X is normable if a norm exists on X such that the metric induced by the norm is com-
patible with 7.

Definition 7. A seminorm on a vector space X is a real-valued function p on X such that:

1. p(x +y) <p(x) +ply) forall z,y € X.



2. p(Az) = |A|p(x) for all x € X and all scalars A € K.
Definition 8. A seminorm p is a norm if it satisfies: p(z) # 0 if z # 0.

Definition 9. A family & of seminorms on X is said to be separating if to each = # 0 corre-
sponds at least one p € & with p(z) # 0.

Theorem 1. With each separating family of seminorms on X we can associate a locally convex
topology T on X and vice versa: every locally convex topology is generated by some family of
separating Seminorms.

Proof. c.f.: [9] [
Proof. c.f.: [9] O

Theorem 2. A localy convex vector space (X, T) is metrizable iff T can be defined by & =
{pn : n € N} a countable separating family of seminorms on X. One can equip X with a
metric which is compatible with T and which provides a family of convex balls.

Proof. c.f.: [10, 9] [l

A lcv space from theorem 2 can be equipped with the metric:

Z gn Pnl@=Y) )
1 + pn T — y)

This metric is compatible with 7 but in general this metric doesn’t provide convex balls (see

the discussion in [9] after theorem 1.24 and exercise 18). If X is complete with respect to the

metric from theorem 2 it is obviously a Fréchet space. Usually a Fréchet space topology is

defined explicitely by gving a countable separating family of seminorms.

Definition 10. A Banach space is a normed tvs which is complete with respect to the norm.

Theorem 3. A topological vector space X is normable if and only if its origin has a convex
bounded neighborhood.

Proof. c.t.: [9] [l

2 Some historical remarks

First idea to generalize a notion of a manifold was a manifold modeled on a Banach space (Ba-
nach manifold). Later it turned out that Banach manifolds are not suitable for many questions
of Global Analysis, as shown by the result due to [11], see also [12]: If a Banach Lie group
acts effectively on a finite dimensional compact smooth manifold it must be finite dimensional
itself. One would like to have a notion of a manifold modeled on a more general space: Fréchet
or only locally convex.

Differential calculus in infinite dimensions has already quite a long history. Perhaps the
need for such a generalization became apparent first to Bernoulli and Euler at the beginnings of
variational calculus. During the 20-th century the motivation to differentiate in spaces which
are more general than Banach spaces became stronger, and many different approaches and def-
initions were attempted. The main difficulty encountered was that composition of (continuous)
linear mappings ceases to be a jointly continuous operation for any suitable topology on spaces
of linear mappings.
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Example 1 (after [2]). Consider the evaluation ev : E X E* — R, where E is a locally convex
space and E* is its dual of continuous linear functionals equipped with any locally convex
topology. Let us assume that the evaluation is jointly continuous. Then there are neighborhoods
UC EandV C E* of zero such that ev(U x V') C [—1, 1. But then U is contained in the polar
of V', so it is bounded in I, and so I admits a bounded neighborhood and is thus normable.

Definition 11. Given a dual pair (X, Y") the polar set or polar of a subset A of X is a set A° in
Y defined as:
A°:={y eY :sup{|{z,y)| : z € A} <1} (3)

2.1 The notion of derivative

The problem of defining a derivative on a locally convex space roots in the variational calcu-
lus. Soon after the invention of the differential calculus, ideas were developed which would
later lead to variational calculus. It evolved into a rather formal procedure, used extensively in
physics. In his Lecture courses Weierstrass gave more reliable foundations to the theory, which
was made public by Kneser (Kneser, A., Lehrbuch der Variationsrechnung, Vieweg, Braun-
schweig, 1900). Further development concerned mainly the relation between the calculus of
variations and the theory of partial differential equations.

2.1.1 Fréchet derivative
Fréchet defined the derivative of a mapping f between normed spaces as follows:

Definition 12. Let f : X — Y be a mapping between two normed spaces. f is said to be
Fréchet-differentiable if there exists a continuous linear operator A such that

f(ac+h)—f(a:)—Ah:0. )

lim
[h]]—0 11|

2.1.2 Gateaux derivative

Definition 13. Let X and Y be locally convex topological vector spaces, U C X is open, and
F : X — Y. The Gateaux differential dF'(u;h) of F' at u € U in the direction h € X is
defined as:

F h) - F d
dF (u; h) = lim (utrh) = Flu) _ = F(u+7h) (5)
T—0 T dr =0

if the limit exists. If the limit exists for all 4 € X, then one says that F'is Gateaux differentiable
at u.

2.1.3 ...and more...

In [2] authors recall (after Averbukh, Smolyanov, The various definitions of the derivative in
linear topological spaces, 1968) that in the literature one finds 25 inequivalent definitions of
the first derivative (in tvs) in a single point. This shows that finite order differentiability beyond
Banach spaces is really a nontrivial issue. For continuously differentiable mappings the many
possible notions collapse to 9 inequivalent ones (fewer for Fréchet spaces). And if one looks
for infinitely often differentiable mappings, then one ends up with 6 inequivalent notions (only
3 for Fréchet spaces).
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2.2 Problem of cartesian closedness

One would like to have a property:
C*(E X F,G)=C>®(E,C*(F,G)) (NOT TRUE!), (6)

which is callad a "cartesian closednes". This is a property fulfilled by all the nice categories,
but a category of smooth manifolds doesn’t have it. This was a motivation for developing
generalizations of smooth manifolds, so called smooth spaces:

e Chen spaces (Chen, 1977)
e diffeological spaces (Souriau 1980)

The categories of smooth spaces defined in those approaches have all the nice properties, but
their objects are quite nasty.

There are also different approaches. In [5] (see also [2, 6]) a smooth calculus was proposed
which has a property (6) holding without any restrictions for convenient vector spaces. The
key idea is to define a different topology on the product. The approach of [5] is based on the
bornological instead of topological concepts.

However if one wants to define a smooth manifold basing on a concept of charts, then
the cartesian closedness is very limited even in the convenient setting (see discussion in [2],
chapter IV). A way out is to base a definition of a manifold on the concept of the family of
smooth mappings (see: [15, 16]).

2.3 Infinite dimensional Lie groups

In physics one would like to treat certain spaces of functions as infinite dimensional Lie groups.
To put it in an appropriate mathematical setting one needs first a notion of an infinite dimen-
sional manifold. A definition proposed in [1] makes it possible to provide certain infinite di-
mensional spaces with the structure of a manifold modeled on a locally convex vector space.
One can apply in this case all tools of locally convex analysis. Unfortunately this definition
doesn’t cover all the interesting cases. In particular it fails for the spaces of mappings between
noncompact manifolds.

Example 2 (after [1]). If M is a non-compact finite-dimensional manifold, then one cannot
expect the topological groups C*°(M, K) to be Lie groups. A typical example arises for M = N
(a 0 - dimensional manifold) and K = T := R/Z . Then C*(M,K) = TV is a topological
group for which no 1-neighborhood is contractible.

This means that one cannot consider Dif f (M) to be a co-dim Lie group for a noncompact
manifold M. As globally hiperbolic lorentzian manifolds are noncompact, this result makes
some of the physics applications impossible. An alternative approach is provided by [2]. This
setting is more general but also has its drawbacks.
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3 Proposed topics of the talks

1. Preliminaries to the convenient setting of global calculus (9 talks)

Bornological concepts in functional analysis 1

Definition of bornology (family of bounded sets), relation between bornology and
topology, bornologification, topologification, bornological vector spaces, linear
bornology, examples of bornologies.

Proposed literature: [7, 5], there is also a Diplomarbeit of Florian Gach, where all
the definitions can be found: [13].

Bornological concepts in functional analysis 11
Initial and final bornologies, duality with topology.
Proposed literature: [7, 5, 13]

Mackey (bornological) convergence

Definition of Mackey convergence, Makey nets, Mackey-Cauchy sequences, com-
pleteness, comparison with other notions of convergence, examples.

Proposed literature: [2, 7, 5, 13]

Mackey convergance in smooth calculus

Lipschitz curves, Mackey convergence of the difference quotioent.

Proposed literature: [2] (chapter I, sections 1-2), [5] (section 2.2), [13](section 5),
see also: [6].

The c*>*-topology
Definition of the ¢*>°-topology, definition of a convenient vector space, examples
Proposed literature: [2] (chapter I, sections 2,4), [5], [6].

Cartesian closedness in convenient calculus I, 11
Proofs of different variants of the exponential law in convenient setting.
Proposed literature: [2] (chapter I, section 3), [5] (section 4.4), [6].

Uniform boundednes principle and it’s consequences

Uniform boundednes principle, natural bornology vs. pointwise bornology, spaces
of multilinear mappings.

Proposed literature: [2] (chapter I, section 5), [5] (section 3.6), [6].

Importance of bornological concepts in smooth calculus
Summary of the previous talks.
Proposed literature: [2, 5, 6].

2. Locally convex calculus (9 talks)

(a)

Introduction to the locally convex calculus (3 talks)

e Locally convex vector spaces
Definition and important properties of locally convex vector spaces, Fréchet
spaces
Proposed literature: [9, 10, 1].

e Calculus in locally convex vector spaces I, I1
Definition of a derivative, Fundamental Theorem of Calculus, chain rule, par-
tial derivatives, higher derivatives
Proposed literature: [1, 3, 14].
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(b) Infinite dimensional manifolds modeled on locally convex topological
vector spaces. (2 talks)

o Infinite dimensional manifolds
Definition of an infinite dimensional manifold modeled on a locally convex tvs,
properties, examples
Proposed literature: [1, 14].
o Differential forms
Differential forms, exterior derivative, Lie derivative
Proposed literature: [1, 14].

(c) Infinite dimensional Lie Groups (4 talks)

o Infinite dimensional Lie Groups
Definition of infinite dimensional Lie groups, Lie algebras
Proposed literature: [1, 4].
e Groups of mappings
Examples of groups of mappings, diffeomorphism group of a compact mani-
fold
Proposed literature: [1, 4].
e Gauge group 1, 11
Gauge grup as an infinite dimensional Lie group, definition and properties
Proposed literature: [1, 4].

3. Infinite dimensional manifolds in convenient setting
Depending on the time left and interest of participants we can have a few talks on this
subject at the end of the academic year.

4. Smooth spaces
If there is someone interested in category theory, we can have also some talks on Chen
spaces or diffeologies.
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